Michael Bradley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8335862/publications.pdf

Version: 2024-02-01

758635 642321 39 519 12 23 citations h-index g-index papers 41 41 41 582 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of Secondary Electron Emission From Various Targets During Variable Pulse Length PIII. , 2022, ,		O
2	Characterisation of hydrogen ion implantation damage in quartz, lithium niobate and tellurium dioxide by Raman spectroscopy. Radiation Effects and Defects in Solids, 2021, 176, 601-611.	0.4	O
3	P3I: a simulation code for Plasma Immersion Ion Implantation (PIII) dose prediction., 2021,,.		O
4	Time-resolved evolution of plasma parameters in a plasma immersion ion implantation source. Physics of Plasmas, 2021, 28, 123523.	0.7	4
5	The effect of step-wise surface nitrogen doping in MPECVD grown polycrystalline diamonds. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 258, 114559.	1.7	2
6	Effects of x-ray irradiation on charge transport and charge collection efficiency in stabilized a-Se photoconductors. Journal of Applied Physics, 2020, 127, .	1.1	13
7	Charged particle radiation induced changes to optical properties of acousto-optic materials. Applied Optics, 2020, 59, 3706.	0.9	1
8	Optimal parameter(s) for the synthesis of nitrogen-vacancy (NV) centres in polycrystalline diamonds at low pressure. Journal of Materials Science: Materials in Electronics, 2019, 30, 10369-10382.	1.1	1
9	Protein-Energy Malnutrition Exacerbates Stroke-Induced Forelimb Abnormalities and Dampens Neuroinflammation. Translational Stroke Research, 2018, 9, 622-630.	2.3	12
10	Light-Emitting Diodes Fabricated From Carbon lons Implanted Into p-Type Silicon. IEEE Transactions on Electron Devices, 2015, 62, 914-918.	1.6	1
11	Nanoscale imaging of freestanding nitrogen doped single layer graphene. Nanoscale, 2015, 7, 2289-2294.	2.8	18
12	Laser system refinements to reduce variability in infarct size in the rat photothrombotic stroke model. Journal of Neuroscience Methods, 2015, 247, 58-66.	1.3	11
13	Superconducting moving coil system to study the behaviour of superconducting coils for a BIPM cryogenic watt balance. Metrologia, 2014, 51, S123-S131.	0.6	10
14	Large-Area, Freestanding, Single-Layer Graphene–Gold: A Hybrid Plasmonic Nanostructure. ACS Nano, 2014, 8, 6353-6362.	7.3	43
15	MAGNETIC GUIDING OF A MOVING FERROMAGNETIC SPHERE. Progress in Electromagnetics Research M, 2013, 32, 245-256.	0.5	O
16	The BIPM Watt Balance: Improvements and Developments. IEEE Transactions on Instrumentation and Measurement, 2011, 60, 2378-2386.	2.4	33
17	Chemical Reactions and Applications of the Reductive Surface of Porous Silicon. Journal of Nanoscience and Nanotechnology, 2010, 10, 6332-6339.	0.9	4
18	Electroluminescence in plasma ion implanted silicon. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 985-988.	0.8	4

#	Article	IF	CITATIONS
19	Silicon electroluminescent device production via plasma ion implantation. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S206-S209.	0.8	4
20	Prospects for band gap engineering by plasma ion implantation. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S210-S213.	0.8	3
21	Predicted depth profiles for nitrogen-ion implantation into gallium arsenide. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 939-942.	0.8	0
22	Active Charge/Discharge IGBT Modulator for Marx Generator and Plasma Applications. IEEE Transactions on Plasma Science, 2007, 35, 473-478.	0.6	17
23	Time-Resolved Ion and Electron Current Measurements in Pulsed Plasma Sheaths. IEEE Transactions on Plasma Science, 2006, 34, 1156-1159.	0.6	2
24	Low temperature synthesis of diamond thin films through graphite etching in a microwave hydrogen plasma. Carbon, 2005, 43, 2635-2638.	5.4	17
25	Faraday dosimetry characteristics of PIII doping processes. IEEE Transactions on Plasma Science, 2003, 31, 369-376.	0.6	8
26	Measurement and analysis of deposition-etch characteristics of BF3 plasma immersion ion implantation. Review of Scientific Instruments, 2002, 73, 840-842.	0.6	13
27	Ion depletion effects in sheath dynamics during plasma immersion ion implantation—models and data. Review of Scientific Instruments, 2002, 73, 837-839.	0.6	4
28	Particle trapping and annihilation within the extraction system of ion sources. Review of Scientific Instruments, 2002, 73, 834-836.	0.6	0
29	Measurements of secondary electron emission and plasma density enhancement for plasma exposed surfaces using an optically isolated Faraday cup. Review of Scientific Instruments, 2002, 73, 1153-1156.	0.6	19
30	Active charge control in PIIIâ€"enlarging the process space. Surface and Coatings Technology, 2002, 156, 77-82.	2,2	1
31	Single ion mass spectrometry and the fine structure constant. AIP Conference Proceedings, 2001, , .	0.3	1
32	Precise Measurements of the Masses of Cs, Rb and Na $\hat{a}\in$ A New Route to the Fine Structure Constant. Hyperfine Interactions, 2001, 132, 177-187.	0.2	17
33	Precise Measurements of the Masses of Cs, Rb and Na $\hat{a} \in$ A New Route to the Fine Structure Constant. , 2001, , 177-187.		2
34	Penning Trap Measurements of the Masses of C133s, R87, 85b, and N23awith Uncertainties ≠ 6 .2ppb. Physical Review Letters, 1999, 83, 4510-4513.	2.9	195
35	Accurate mass spectrometry of trapped ions. , 1997, 108, 227-238.		7
36	Atom traps compared with ion traps. Physica Scripta, 1995, T59, 131-133.	1.2	4

3

#	Article	IF	CITATIONS
37	Mass spectrometry at 0.1 part per billion for fundamental metrology. IEEE Transactions on Instrumentation and Measurement, 1995, 44, 550-552.	2.4	4
38	Accurate atomic mass measurements from Penning trap mass comparisons of individual ions. Physica Scripta, 1995, T59, 144-154.	1.2	42
39	Line-dependent saturation in CO2 lasers. Applied Physics B, Photophysics and Laser Chemistry, 1993, 56, 347-353.	1.5	2