
## Rafael Manuel Jiménez DÃ-az

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8335263/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Comparison of genotyping by sequencing and microsatellite markers for unravelling population structure in the clonal fungus <i>Verticillium dahliae</i> . Plant Pathology, 2018, 67, 76-86.                                                      | 2.4 | 14        |
| 2  | Variation of pathotypes and races and their correlations with clonal lineages in <i>Verticillium dahliae</i> . Plant Pathology, 2017, 66, 651-666.                                                                                               | 2.4 | 51        |
| 3  | Short communication: Local infection of opium poppy leaves by Peronospora somniferi sporangia can<br>give rise to systemic infections and seed infection in resistant cultivars. Spanish Journal of<br>Agricultural Research, 2017, 15, e10SC01. | 0.6 | 2         |
| 4  | Characterization of resistance against the oliveâ€defoliating <i>Verticillium dahliae</i> pathotype in selected clones of wild olive. Plant Pathology, 2016, 65, 1279-1291.                                                                      | 2.4 | 35        |
| 5  | Clonal Expansion and Migration of a Highly Virulent, Defoliating Lineage of <i>Verticillium dahliae</i> . Phytopathology, 2016, 106, 1038-1046.                                                                                                  | 2.2 | 34        |
| 6  | Trichoderma asperellum is effective for biocontrol of Verticillium wilt in olive caused by the defoliating pathotype of Verticillium dahliae. Crop Protection, 2016, 88, 45-52.                                                                  | 2.1 | 75        |
| 7  | First report of the presence of Verticillium dahliae VCG1A in Australia. Australasian Plant Disease<br>Notes, 2016, 11, 1.                                                                                                                       | 0.7 | 10        |
| 8  | Infection by Meloidogyne javanica does not breakdown resistance to the defoliating pathotype of<br>Verticillium dahliae in selected clones of wild olive. Scientia Horticulturae, 2016, 199, 149-157.                                            | 3.6 | 10        |
| 9  | Symptomless Host and Nonhost Responses of Paulownia (Paulownia spp.) to Olive-Defoliating<br>Verticillium dahliae. Plant Disease, 2015, 99, 962-968.                                                                                             | 1.4 | 3         |
| 10 | Fusarium wilt of chickpeas: Biology, ecology and management. Crop Protection, 2015, 73, 16-27.                                                                                                                                                   | 2.1 | 114       |
| 11 | Combined use of a new SNP-based assay and multilocus SSR markers to assess genetic diversity of<br>Xylella fastidiosa subsp. pauca infecting citrus and coffee plants. International Microbiology, 2015, 18,<br>13-24.                           | 2.4 | 5         |
| 12 | Complex Molecular Relationship Between Vegetative Compatibility Groups (VCGs) in <i>Verticillium<br/>dahliae</i> : VCGs Do Not Always Align with Clonal Lineages. Phytopathology, 2014, 104, 650-659.                                            | 2.2 | 28        |
| 13 | Recombination between Clonal Lineages of the Asexual Fungus Verticillium dahliae Detected by<br>Genotyping by Sequencing. PLoS ONE, 2014, 9, e106740.                                                                                            | 2.5 | 95        |
| 14 | A Comparison of Real-Time PCR Protocols for the Quantitative Monitoring of Asymptomatic Olive<br>Infections by <i>Verticillium dahliae</i> Pathotypes. Phytopathology, 2013, 103, 1058-1068.                                                     | 2.2 | 33        |
| 15 | Quantitative and Microscopic Assessment of Compatible and Incompatible Interactions between<br>Chickpea Cultivars and Fusarium oxysporum f. sp. ciceris Races. PLoS ONE, 2013, 8, e61360.                                                        | 2.5 | 49        |
| 16 | Verticillium Wilt, A Major Threat to Olive Production: Current Status and Future Prospects for its<br>Management. Plant Disease, 2012, 96, 304-329.                                                                                              | 1.4 | 177       |
| 17 | Mycelial compatibility groups and pathogenic diversity in <i>Sclerotium rolfsii</i> populations from sugar beet crops in Mediterraneanâ€ŧype climate regions. Plant Pathology, 2012, 61, 739-753.                                                | 2.4 | 14        |
| 18 | A proteomic study of in-root interactions between chickpea pathogens: The root-knot nematode<br>Meloidogyne artiellia and the soil-borne fungus Fusarium oxysporum f. sp. ciceris race 5. Journal of<br>Proteomics, 2011, 74, 2034-2051.         | 2.4 | 27        |

| #  | Article                                                                                                                                                                                                                                                                            | IF               | CITATIONS          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 19 | Real-Time PCR Quantification of <i>Peronospora arborescens</i> , the Opium Poppy Downy Mildew Pathogen, in Seed Stocks and Symptomless Infected Plants. Plant Disease, 2011, 95, 143-152.                                                                                          | 1.4              | 35                 |
| 20 | Region-Wide Analysis of Genetic Diversity in <i>Verticillium dahliae</i> Populations Infecting Olive in Southern Spain and Agricultural Factors Influencing the Distribution and Prevalence of Vegetative Compatibility Groups and Pathotypes. Phytopathology, 2011, 101, 304-315. | 2.2              | 76                 |
| 21 | Host suitability of <i>Vitis</i> rootstocks to rootâ€knot nematodes ( <i>Meloidogyne</i> spp.) and the dagger nematode <i>Xiphinema index</i> , and plant damage caused by infections. Plant Pathology, 2011, 60, 575-585.                                                         | 2.4              | 14                 |
| 22 | Development and application of new molecular markers for analysis of genetic diversity in <i>Verticillium dahliae</i> populations. Plant Pathology, 2011, 60, 866-877.                                                                                                             | 2.4              | 16                 |
| 23 | Microbial communities associated with the root system of wild olives (Olea europaea L. subsp.) Tj ETQq1 1 0.78<br>Verticillium dahliae. Plant and Soil, 2011, 343, 329-345.                                                                                                        | 4314 rgBT<br>3.7 | /Overlock 10<br>89 |
| 24 | In Planta and Soil Quantification of <i>Fusarium oxysporum</i> f. sp. <i>ciceris</i> and Evaluation of<br>Fusarium Wilt Resistance in Chickpea with a Newly Developed Quantitative Polymerase Chain Reaction<br>Assay. Phytopathology, 2011, 101, 250-262.                         | 2.2              | 50                 |
| 25 | Molecular and Pathogenic Characterization of <i>Fusarium redolens</i> , a New Causal Agent of Fusarium Yellows in Chickpea. Plant Disease, 2011, 95, 860-870.                                                                                                                      | 1.4              | 30                 |
| 26 | Genetic Diversity and Host Range of <i>Verticillium dahliae</i> Isolates from Artichoke and Other<br>Vegetable Crops in Spain. Plant Disease, 2010, 94, 396-404.                                                                                                                   | 1.4              | 29                 |
| 27 | Verticillium Wilt: A Threat to Artichoke Production. Plant Disease, 2010, 94, 1176-1187.                                                                                                                                                                                           | 1.4              | 26                 |
| 28 | Plant-Parasitic Nematodes Attacking Olive Trees and their Management. Plant Disease, 2010, 94, 148-162.                                                                                                                                                                            | 1.4              | 36                 |
| 29 | DNA sequence analysis of conserved genes reveals hybridization events that increase genetic diversity inÂVerticillium dahliae. Fungal Biology, 2010, 114, 209-218.                                                                                                                 | 2.5              | 17                 |
| 30 | Identification and quantification of Fusarium oxysporum in planta and soil by means of an improved specific and quantitative PCR assay. Applied Soil Ecology, 2010, 46, 372-382.                                                                                                   | 4.3              | 59                 |
| 31 | A PCRâ€based â€~molecular tool box' for <i>in planta</i> differential detection of <i>Verticillium dahliae</i> vegetative compatibility groups infecting artichoke. Plant Pathology, 2009, 58, 515-526.                                                                            | 2.4              | 29                 |
| 32 | Role of oospores as primary inoculum for epidemics of downy mildew caused by <i>Peronospora arborescens</i> in opium poppy crops in Spain. Plant Pathology, 2009, 58, 1092-1103.                                                                                                   | 2.4              | 21                 |
| 33 | Changes in the redox status of chickpea roots in response to infection by <i>Fusarium oxysporum</i> f. sp. <i>ciceris</i> : apoplastic antioxidant enzyme activities and expression of oxidative stressâ€related<br>genes. Plant Biology, 2009, 11, 194-203.                       | 3.8              | 28                 |
| 34 | Vegetative Compatibility Groups in <i>Fusarium oxysporum</i> f.sp. <i>ciceris</i> and <i>F.<br/>oxysporum</i> Nonâ€pathogenic to Chickpea. Journal of Phytopathology, 2009, 157, 729-735.                                                                                          | 1.0              | 10                 |
| 35 | A Nested-Polymerase Chain Reaction Protocol for Detection and Population Biology Studies of <i>Peronospora arborescens</i> , the Downy Mildew Pathogen of Opium Poppy, Using Herbarium Specimens and Asymptomatic, Fresh Plant Tissues. Phytopathology, 2009, 99, 73-81.           | 2.2              | 17                 |
| 36 | Vegetative compatibility of cotton-defoliating Verticillium dahliae in Israel and its pathogenicity to various crop plants. European Journal of Plant Pathology, 2008, 122, 603-617.                                                                                               | 1.7              | 52                 |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Spatiotemporal Analysis of Spread of Infections by Verticillium dahliae Pathotypes Within a High Tree<br>Density Olive Orchard in Southern Spain. Phytopathology, 2008, 98, 167-180.                                                                                        | 2.2 | 69        |
| 38 | Infection by <i>Meloidogyne artiellia</i> Does Not Break Down Resistance to Races 0, 1A, and 2 of<br><i>Fusarium oxysporum</i> f. sp. <i>ciceris</i> in Chickpea Genotypes. Phytopathology, 2008, 98,<br>709-718.                                                           | 2.2 | 10        |
| 39 | Peronospora arborescens Causes Downy Mildew Disease in Commercial Opium Poppy Crops in France.<br>Plant Disease, 2008, 92, 834-834.                                                                                                                                         | 1.4 | 12        |
| 40 | Plant-Parasitic Nematodes Attacking Chickpea and Their In Planta Interactions with Rhizobia and<br>Phytopathogenic Fungi. Plant Disease, 2008, 92, 840-853.                                                                                                                 | 1.4 | 33        |
| 41 | Phylogenetic Analysis of <i>Verticillium dahliae</i> Vegetative Compatibility Groups. Phytopathology, 2008, 98, 1019-1028.                                                                                                                                                  | 2.2 | 56        |
| 42 | First Report of <i>Pectobacterium carotovorum</i> Causing Soft Rot of Opium Poppy in Spain. Plant<br>Disease, 2008, 92, 317-317.                                                                                                                                            | 1.4 | 7         |
| 43 | Quantitative Modeling of the Effects of Temperature and Inoculum Density of Fusarium oxysporum f.<br>sp. ciceris Races 0 and 5 on Development of Fusarium Wilt in Chickpea Cultivars. Phytopathology, 2007,<br>97, 564-573.                                                 | 2.2 | 32        |
| 44 | Host-Parasite Relationships in Fall-Sown Sugar Beets Infected by the Stem and Bulb Nematode,<br>Ditylenchus dipsaci. Plant Disease, 2007, 91, 71-79.                                                                                                                        | 1.4 | 9         |
| 45 | Phylogenetic Analysis of Downy Mildew Pathogens of Opium Poppy and PCR-Based In Planta and Seed<br>Detection of <i>Peronospora arborescens</i> . Phytopathology, 2007, 97, 1380-1390.                                                                                       | 2.2 | 54        |
| 46 | Plant-Parasitic Nematodes Infecting Grapevine in Southern Spain and Susceptible Reaction to<br>Root-Knot Nematodes of Rootstocks Reported as Moderately Resistant. Plant Disease, 2007, 91, 1147-1154.                                                                      | 1.4 | 37        |
| 47 | DETECTION OF VERTICILLIUM DAHLIAE ISOLATES DIFFERING IN VEGETATIVE COMPATIBILITY IN INFECTED ARTICHOKE PLANTS BY MULTIPLEX, NESTED PCR. Acta Horticulturae, 2007, , 367-374.                                                                                                | 0.2 | Ο         |
| 48 | Cell wall degrading enzymes in fusarium wilt of chickpea: correlation between pectinase and xylanase activities and disease development in plants infected with two pathogenic races of Fusarium oxysporum f. sp. ciceris. Canadian Journal of Botany, 2006, 84, 1395-1404. | 1.1 | 15        |
| 49 | Genetic and Virulence Diversity in Verticillium dahliae Populations Infecting Artichoke in<br>Eastern-Central Spain. Phytopathology, 2006, 96, 288-298.                                                                                                                     | 2.2 | 78        |
| 50 | Molecular Variability Within and Among Verticillium dahliae Vegetative Compatibility Groups<br>Determined by Fluorescent Amplified Fragment Length Polymorphism and Polymerase Chain Reaction<br>Markers. Phytopathology, 2006, 96, 485-495.                                | 2.2 | 110       |
| 51 | Temperature Response of Chickpea Cultivars to Races of Fusarium oxysporum f. sp. ciceris, Causal<br>Agent of Fusarium Wilt. Plant Disease, 2006, 90, 365-374.                                                                                                               | 1.4 | 58        |
| 52 | Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular<br>mycorrhizal fungi. Plant Pathology, 2006, 55, 705-713.                                                                                                                       | 2.4 | 76        |
| 53 | Endophytic Colonisation of Opium Poppy, Papaver somniferum, by an Entomopathogenic Beauveria<br>bassiana Strain. Mycopathologia, 2006, 161, 323-329.                                                                                                                        | 3.1 | 129       |
| 54 | First Report of Broomrape (Orobanche crenata) Infecting Lettuce in Southern Spain. Plant Disease, 2006. 90. 1112-1112.                                                                                                                                                      | 1.4 | 2         |

| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | First Report of Meloidogyne arenaria Parasitizing Lettuce in Southern Spain. Plant Disease, 2006, 90,<br>975-975.                                                                                                                                                                     | 1.4 | 4         |
| 56 | Extracellular xylanases from two pathogenic races of Fusarium oxysporum f. sp. ciceris: enzyme production in culture and purification and characterization of a major isoform as an alkaline endo-β-(1,4)-xylanase of low molecular weight. Antonie Van Leeuwenhoek, 2005, 88, 48-59. | 1.7 | 20        |
| 57 | Differences in Feeding Sites Induced by Root-Knot Nematodes, Meloidogyne spp., in Chickpea.<br>Phytopathology, 2005, 95, 368-375.                                                                                                                                                     | 2.2 | 34        |
| 58 | Stepwise Evolution of Races in Fusarium oxysporum f. sp. ciceris Inferred from Fingerprinting with Repetitive DNA Sequences. Phytopathology, 2004, 94, 228-235.                                                                                                                       | 2.2 | 43        |
| 59 | Integrated Management of Fusarium Wilt of Chickpea with Sowing Date, Host Resistance, and<br>Biological Control. Phytopathology, 2004, 94, 946-960.                                                                                                                                   | 2.2 | 92        |
| 60 | Development of a Specific Polymerase Chain Reaction-Based Assay for the Identification of Fusarium oxysporum f. sp. ciceris and Its Pathogenic Races 0, 1A, 5, and 6. Phytopathology, 2003, 93, 200-209.                                                                              | 2.2 | 105       |
| 61 | Interactions Between Meloidogyne artiellia, the Cereal and Legume Root-Knot Nematode, and Fusarium oxysporum f. sp. ciceris Race 5 in Chickpea. Phytopathology, 2003, 93, 1513-1523.                                                                                                  | 2.2 | 40        |
| 62 | First Report of Meloidogyne incognita Infecting Spinach in Southern Spain. Plant Disease, 2003, 87,<br>874-874.                                                                                                                                                                       | 1.4 | 6         |
| 63 | Incidence and Population Density of Plant-Parasitic Nematodes Associated with Olive Planting Stocks<br>at Nurseries in Southern Spain. Plant Disease, 2002, 86, 1075-1079.                                                                                                            | 1.4 | 56        |
| 64 | Effect of fusaric acid and phytoanticipins on growth of rhizobacteria andFusarium oxysporum.<br>Canadian Journal of Microbiology, 2002, 48, 971-985.                                                                                                                                  | 1.7 | 46        |
| 65 | Host-Parasite Relationships in Root-Knot Disease of White Mulberry. Plant Disease, 2001, 85, 277-281.                                                                                                                                                                                 | 1.4 | 14        |
| 66 | Influence of Temperature and Inoculum Density of Fusarium oxysporum f. sp. ciceris on Suppression of<br>Fusarium Wilt of Chickpea by Rhizosphere Bacteria. Phytopathology, 2001, 91, 807-816.                                                                                         | 2.2 | 80        |
| 67 | Yield Loss in Chickpeas in Relation to Development of Fusarium Wilt Epidemics. Phytopathology, 2000,<br>90, 1269-1278.                                                                                                                                                                | 2.2 | 110       |
| 68 | Infection of Olive Trees by Heterodera mediterranea in Orchards in Southern Spain. Plant Disease, 1999, 83, 710-713.                                                                                                                                                                  | 1.4 | 19        |
| 69 | Phenology of Didymella rabiei Development on Chickpea Debris Under Field Conditions in Spain.<br>Phytopathology, 1998, 88, 983-991.                                                                                                                                                   | 2.2 | 21        |
| 70 | Interactions of Pratylenchus thornei and Fusarium oxysporum f. sp. ciceris on Chickpea.<br>Phytopathology, 1998, 88, 828-836.                                                                                                                                                         | 2.2 | 33        |
| 71 | Effect of Sowing Date, Host Cultivar, and Race of Fusarium oxysporum f. sp. ciceris on Development of<br>Fusarium Wilt of Chickpea. Phytopathology, 1998, 88, 1338-1346.                                                                                                              | 2.2 | 56        |
| 72 | Plant Parasitic Nematodes Associated With Chickpea in Southern Spain and Effect of Soil Temperature<br>On Reproduction of Pratylenchus Thornei. Nematologica, 1996, 42, 211-219.                                                                                                      | 0.2 | 30        |

| #  | Article                                                                                                         | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Parasitism of the root-lesion nematode Pratylenchus thornei on chickpea. Plant Pathology, 1995, 44,<br>728-733. | 2.4 | 18        |
| 74 | Effects of Pyridate on Chickpea. Functional Plant Biology, 1995, 22, 731.                                       | 2.1 | 2         |