
Richard Thorne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8334858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Science Reviews, 2013, 179, 127-181.	3.7	932
2	Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research, 1998, 103, 20487-20500.	3.3	737
3	Pitch-angle diffusion of radiation belt electrons within the plasmasphere. Journal of Geophysical Research, 1972, 77, 3455-3474.	3.3	688
4	Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. Journal of Geophysical Research, 2003, 108, .	3.3	616
5	Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature, 2013, 504, 411-414.	13.7	608
6	Radiation belt dynamics: The importance of waveâ€particle interactions. Geophysical Research Letters, 2010, 37, .	1.5	601
7	Timescale for radiation belt electron acceleration by whistler mode chorus waves. Journal of Geophysical Research, 2005, 110, .	3.3	561
8	Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophysical Research Letters, 1998, 25, 3011-3014.	1.5	529
9	The terrestrial ring current: Origin, formation, and decay. Reviews of Geophysics, 1999, 37, 407-438.	9.0	523
10	Wave acceleration of electrons in the Van Allen radiation belts. Nature, 2005, 437, 227-230.	13.7	505
11	Equilibrium structure of radiation belt electrons. Journal of Geophysical Research, 1973, 78, 2142-2149.	3.3	493
12	Turbulent loss of ring current protons. Journal of Geophysical Research, 1970, 75, 4699-4709.	3.3	492
13	Electron Acceleration in the Heart of the Van Allen Radiation Belts. Science, 2013, 341, 991-994.	6.0	463
14	Science Goals and Overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA's Van Allen Probes Mission. Space Science Reviews, 2013, 179, 311-336.	3.7	463
15	Electron scattering loss in Earth's inner magnetosphere: 1. Dominant physical processes. Journal of Geophysical Research, 1998, 103, 2385-2396.	3.3	434
16	Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature, 2010, 467, 943-946.	13.7	432
17	Plasmaspheric hiss. Journal of Geophysical Research, 1973, 78, 1581-1596.	3.3	407
18	Relativistic electron precipitation during magnetic storm main phase. Journal of Geophysical Research, 1971, 76, 4446-4453.	3.3	397

#	Article	IF	CITATIONS
19	Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. Journal of Geophysical Research, 2003, 108, .	3.3	380
20	Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophysical Research Letters, 2007, 34, .	1.5	341
21	Outward radial diffusion driven by losses at magnetopause. Journal of Geophysical Research, 2006, 111,	3.3	328
22	Resonant scattering of plasma sheet electrons by whistlerâ€node chorus: Contribution to diffuse auroral precipitation. Geophysical Research Letters, 2008, 35, .	1.5	323
23	The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature, 2008, 452, 62-66.	13.7	313
24	Dynamic evolution of energetic outer zone electrons due to waveâ€particle interactions during storms. Journal of Geophysical Research, 2007, 112, .	3.3	307
25	Timescale for MeV electron microburst loss during geomagnetic storms. Journal of Geophysical Research, 2005, 110, .	3.3	296
26	Global distribution of whistlerâ€mode chorus waves observed on the THEMIS spacecraft. Geophysical Research Letters, 2009, 36, .	1.5	282
27	Substorm dependence of plasmaspheric hiss. Journal of Geophysical Research, 2004, 109, .	3.3	281
28	Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14-16, 1997, storm. Journal of Geophysical Research, 2001, 106, 7-22.	3.3	261
29	Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophysical Research Letters, 2003, 30, .	1.5	256
30	Identifying the Driver of Pulsating Aurora. Science, 2010, 330, 81-84.	6.0	249
31	Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods. Journal of Geophysical Research, 2003, 108, .	3.3	234
32	Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	230
33	Global model of lower band and upper band chorus from multiple satellite observations. Journal of Geophysical Research, 2012, 117, .	3.3	229
34	Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science, 2017, 356, 821-825.	6.0	229
35	On the preferred source location for the convective amplification of ion cyclotron waves. Journal of Geophysical Research, 1993, 98, 9233-9247.	3.3	225
36	A Long-Lived Relativistic Electron Storage Ring Embedded in Earth's Outer Van Allen Belt. Science, 2013, 340. 186-190.	6.0	216

#	Article	IF	CITATIONS
37	Source and seed populations for relativistic electrons: Their roles in radiation belt changes. Journal of Geophysical Research: Space Physics, 2015, 120, 7240-7254.	0.8	215
38	Outer zone relativistic electron acceleration associated with substorm-enhanced whistler mode chorus. Journal of Geophysical Research, 2002, 107, SMP 29-1.	3.3	206
39	Nonlinear interaction of energetic electrons with large amplitude chorus. Geophysical Research Letters, 2008, 35, .	1.5	201
40	Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm. Journal of Geophysical Research: Space Physics, 2014, 119, 4681-4693.	0.8	182
41	Parasitic pitch angle diffusion of radiation belt particles by ion cyclotron waves. Journal of Geophysical Research, 1972, 77, 5608-5616.	3.3	179
42	Electron scattering by whistlerâ€mode ELF hiss in plasmaspheric plumes. Journal of Geophysical Research, 2008, 113, .	3.3	175
43	Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss. Journal of Geophysical Research: Space Physics, 2013, 118, 7740-7751.	0.8	175
44	Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm. Geophysical Research Letters, 2002, 29, 27-1-27-4.	1.5	173
45	An Observation Linking the Origin of Plasmaspheric Hiss to Discrete Chorus Emissions. Science, 2009, 324, 775-778.	6.0	173
46	Energetic outer zone electron loss timescales during low geomagnetic activity. Journal of Geophysical Research, 2006, 111, .	3.3	170
47	Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their effects on radiation belt electron dynamics. Journal of Geophysical Research: Space Physics, 2015, 120, 3393-3405.	0.8	164
48	Magnetospheric Science Objectives of the Juno Mission. Space Science Reviews, 2017, 213, 219-287.	3.7	163
49	Electron scattering loss in Earth's inner magnetosphere: 2. Sensitivity to model parameters. Journal of Geophysical Research, 1998, 103, 2397-2407.	3.3	159
50	An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts. Nature, 2014, 515, 531-534.	13.7	159
51	Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes. Geophysical Research Letters, 2013, 40, 4526-4532.	1.5	153
52	Global simulation of magnetosonic wave instability in the storm time magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	152
53	Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm. Geophysical Research Letters, 2013, 40, 3507-3511.	1.5	150
54	Evolution of energetic electron pitch angle distributions during storm time electron acceleration to megaelectronvolt energies. Journal of Geophysical Research, 2003, 108, SMP 11-1.	3.3	139

#	Article	IF	CITATIONS
55	Global distribution of equatorial magnetosonic waves observed by THEMIS. Geophysical Research Letters, 2013, 40, 1895-1901.	1.5	137
56	Origins of the Earth's Diffuse Auroral Precipitation. Space Science Reviews, 2016, 200, 205-259.	3.7	136
57	Rapid scattering of radiation belt electrons by stormâ€ŧime EMIC waves. Geophysical Research Letters, 2010, 37, .	1.5	135
58	Modulation of electromagnetic ion cyclotron instability due to interaction with ring current O+during magnetic storms. Journal of Geophysical Research, 1997, 102, 14155-14163.	3.3	129
59	Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations. Geophysical Research Letters, 2014, 41, 1351-1358.	1.5	127
60	Convective instabilities of electromagnetic ion cyclotron waves in the outer magnetosphere. Journal of Geophysical Research, 1994, 99, 17259.	3.3	123
61	Electron pitch angle diffusion by electrostatic electron cyclotron harmonic waves: The origin of pancake distributions. Journal of Geophysical Research, 2000, 105, 5391-5402.	3.3	123
62	Parameterization of radiation belt electron loss timescales due to interactions with chorus waves. Geophysical Research Letters, 2007, 34, .	1.5	122
63	An unusual enhancement of lowâ€frequency plasmaspheric hiss in the outer plasmasphere associated with substormâ€injected electrons. Geophysical Research Letters, 2013, 40, 3798-3803.	1.5	120
64	Origins of plasmaspheric hiss. Journal of Geophysical Research, 2006, 111, .	3.3	118
65	Global distributions of suprathermal electrons observed on THEMIS and potential mechanisms for access into the plasmasphere. Journal of Geophysical Research, 2010, 115, .	3.3	118
66	Resonant scattering of energetic electrons by unusual low-frequency hiss. Geophysical Research Letters, 2014, 41, 1854-1861.	1.5	110
67	Ultra-relativistic electrons in Jupiter's radiation belts. Nature, 2002, 415, 987-991.	13.7	109
68	Simulation of EMIC wave excitation in a model magnetosphere including structured highâ€density plumes. Journal of Geophysical Research, 2009, 114, .	3.3	109
69	Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 2017, 356, 826-832.	6.0	109
70	The contribution of ionâ€cyclotron waves to electron heating and SARâ€arc excitation near the stormâ€time plasmapause. Geophysical Research Letters, 1992, 19, 417-420.	1.5	108
71	Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes. Journal of Geophysical Research, 2007, 112, .	3.3	108
72	Evaluation of whistlerâ€mode chorus intensification on the nightside during an injection event observed on the THEMIS spacecraft. Journal of Geophysical Research, 2009, 114, .	3.3	108

#	Article	IF	CITATIONS
73	The controlling effect of ion temperature on EMIC wave excitation and scattering. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	104
74	Competing source and loss mechanisms due to waveâ€particle interactions in Earth's outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2014, 119, 1960-1979.	0.8	103
75	Electron scattering by magnetosonic waves in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 274-285.	0.8	102
76	Characteristics of the Poynting flux and wave normal vectors of whistlerâ€mode waves observed on THEMIS. Journal of Geophysical Research: Space Physics, 2013, 118, 1461-1471.	0.8	101
77	Typical properties of rising and falling tone chorus waves. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	100
78	New chorus wave properties near the equator from Van Allen Probes wave observations. Geophysical Research Letters, 2016, 43, 4725-4735.	1.5	100
79	Evolution of electron pitch angle distributions following injection from the plasma sheet. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	99
80	Modeling the wave normal distribution of chorus waves. Journal of Geophysical Research: Space Physics, 2013, 118, 1074-1088.	0.8	91
81	Simulations of pitch angle scattering of relativistic electrons with MLTâ€dependent diffusion coefficients. Journal of Geophysical Research, 2009, 114, .	3.3	88
82	Formation of energetic electron butterfly distributions by magnetosonic waves via Landau resonance. Geophysical Research Letters, 2016, 43, 3009-3016.	1.5	88
83	Modeling inward diffusion and slow decay of energetic electrons in the Earth's outer radiation belt. Geophysical Research Letters, 2015, 42, 987-995.	1.5	87
84	Quantitative Evaluation of Radial Diffusion and Local Acceleration Processes During GEM Challenge Events. Journal of Geophysical Research: Space Physics, 2018, 123, 1938-1952.	0.8	86
85	Gyro-resonant electron acceleration atÂJupiter. Nature Physics, 2008, 4, 301-304.	6.5	84
86	Magnetosonic wave excitation by ion ring distributions in the Earth's inner magnetosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 844-852.	0.8	84
87	Characteristics of hissâ€like and discrete whistlerâ€mode emissions. Geophysical Research Letters, 2012, 39, .	1.5	83
88	Comparison of bounceâ€averaged quasiâ€linear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations. Journal of Geophysical Research, 2012, 117, .	3.3	83
89	Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	82
90	Microscopic plasma processes in the Jovian magnetosphere. , 1983, , 454-488.		81

#	Article	IF	CITATIONS
91	Effects of amplitude modulation on nonlinear interactions between electrons and chorus waves. Geophysical Research Letters, 2012, 39, .	1.5	80
92	Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations. Journal of Geophysical Research: Space Physics, 2016, 121, 5520-5536.	0.8	77
93	Threeâ€dimensional ray tracing of VLF waves in a magnetospheric environment containing a plasmaspheric plume. Geophysical Research Letters, 2009, 36, .	1.5	76
94	Unraveling the excitation mechanisms of highly oblique lower band chorus waves. Geophysical Research Letters, 2016, 43, 8867-8875.	1.5	75
95	Energy transfer between energetic ring current H+and O+by electromagnetic ion cyclotron waves. Journal of Geophysical Research, 1994, 99, 17275.	3.3	74
96	Modeling the properties of plasmaspheric hiss: 1. Dependence on chorus wave emission. Journal of Geophysical Research, 2012, 117, .	3.3	74
97	Modeling ring current ion and electron dynamics and plasma instabilities during a highâ€speed stream driven storm. Journal of Geophysical Research, 2012, 117, .	3.3	73
98	Amplification of whistlerâ€mode hiss inside the plasmasphere. Geophysical Research Letters, 2012, 39, .	1.5	73
99	Ray tracing of penetrating chorus and its implications for the radiation belts. Geophysical Research Letters, 2007, 34, .	1.5	70
100	Perpendicular propagation of magnetosonic waves. Geophysical Research Letters, 2012, 39, .	1.5	70
101	A new diffusion matrix for whistler mode chorus waves. Journal of Geophysical Research: Space Physics, 2013, 118, 6302-6318.	0.8	70
102	Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes. Geophysical Research Letters, 2016, 43, 12,348.	1.5	69
103	Modulation of whistler mode chorus waves: 2. Role of density variations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	68
104	Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons. Journal of Geophysical Research: Space Physics, 2015, 120, 6514-6527.	0.8	68
105	Modulation of whistler mode chorus waves: 1. Role of compressional Pc4-5 pulsations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	67
106	Direct evidence for EMIC wave scattering of relativistic electrons in space. Journal of Geophysical Research: Space Physics, 2016, 121, 6620-6631.	0.8	67
107	VLF waves from groundâ€based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons. Geophysical Research Letters, 2017, 44, 6483-6491.	1.5	66
108	Magnetosonic wave instability analysis for proton ring distributions observed by the LANL magnetospheric plasma analyzer. Journal of Geophysical Research, 2011, 116, .	3.3	63

#	Article	IF	CITATIONS
109	Comparison of quasilinear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	63
110	Evidence of stronger pitch angle scattering loss caused by oblique whistlerâ€mode waves as compared with quasiâ€parallel waves. Geophysical Research Letters, 2014, 41, 6063-6070.	1.5	63
111	A novel technique to construct the global distribution of whistler mode chorus wave intensity using lowâ€altitude POES electron data. Journal of Geophysical Research: Space Physics, 2014, 119, 5685-5699.	0.8	63
112	Landau damping of magnetospherically reflected whistlers. Journal of Geophysical Research, 1994, 99, 17249.	3.3	62
113	Properties of Intense Fieldâ€Aligned Lowerâ€Band Chorus Waves: Implications for Nonlinear Waveâ€Particle Interactions. Journal of Geophysical Research: Space Physics, 2018, 123, 5379-5393.	0.8	62
114	Modeling the wave power distribution and characteristics of plasmaspheric hiss. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	61
115	Electron Nonlinear Resonant Interaction With Short and Intense Parallel Chorus Wave Packets. Journal of Geophysical Research: Space Physics, 2018, 123, 4979-4999.	0.8	59
116	New evidence for generation mechanisms of discrete and hissâ€like whistler mode waves. Geophysical Research Letters, 2014, 41, 4805-4811.	1.5	58
117	Global statistical evidence for chorus as the embryonic source of plasmaspheric hiss. Geophysical Research Letters, 2013, 40, 2891-2896.	1.5	56
118	Characteristic energy range of electron scattering due to plasmaspheric hiss. Journal of Geophysical Research: Space Physics, 2016, 121, 11,737.	0.8	54
119	Diffuse auroral scattering by whistler mode chorus waves: Dependence on wave normal angle distribution. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	53
120	Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates. Geophysical Research Letters, 2019, 46, 7182-7190.	1.5	53
121	A unified approach to inner magnetospheric state prediction. Journal of Geophysical Research: Space Physics, 2016, 121, 2423-2430.	0.8	52
122	Origin of two-band chorus in the radiation belt of Earth. Nature Communications, 2019, 10, 4672.	5.8	52
123	The trapping of equatorial magnetosonic waves in the Earth's outer plasmasphere. Geophysical Research Letters, 2014, 41, 6307-6313.	1.5	51
124	A neural network model of threeâ€dimensional dynamic electron density in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 9183-9197.	0.8	51
125	Simulation of energyâ€dependent electron diffusion processes in the Earth's outer radiation belt. Journal of Geophysical Research: Space Physics, 2016, 121, 4217-4231.	0.8	50
126	The relationship between the macroscopic state of electrons and the properties of chorus waves observed by the Van Allen Probes. Geophysical Research Letters, 2016, 43, 7804-7812.	1.5	50

#	Article	IF	CITATIONS
127	Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis. Geophysical Research Letters, 2015, 42, 6906-6915.	1.5	48
128	First evidence for chorus at a large geocentric distance as a source of plasmaspheric hiss: Coordinated THEMIS and Van Allen Probes observation. Geophysical Research Letters, 2015, 42, 241-248.	1.5	48
129	Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth's Inner Magnetosphere. Geophysical Research Letters, 2019, 46, 6258-6267.	1.5	48
130	Modulation of plasmaspheric hiss intensity by thermal plasma density structure. Geophysical Research Letters, 2012, 39, .	1.5	47
131	Evolution of Electron Distribution Driven by Nonlinear Resonances With Intense Fieldâ€Aligned Chorus Waves. Journal of Geophysical Research: Space Physics, 2018, 123, 8149-8169.	0.8	47
132	The Composition of Plasma inside Geostationary Orbit Based on Van Allen Probes Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 6478-6493.	0.8	47
133	Diffuse Jovian aurora influenced by plasma injection from Io. Geophysical Research Letters, 1979, 6, 649-652.	1.5	46
134	Variability of the pitch angle distribution of radiation belt ultrarelativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 2015, 120, 4863-4876.	0.8	43
135	The effect of different solar wind parameters upon significant relativistic electron flux dropouts in the magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 4324-4337.	0.8	43
136	Contemporaneous EMIC and whistler mode waves: Observations and consequences for MeV electron loss. Geophysical Research Letters, 2017, 44, 8113-8121.	1.5	40
137	Free energy to drive equatorial magnetosonic wave instability at geosynchronous orbit. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	38
138	Modeling the properties of plasmaspheric hiss: 2. Dependence on the plasma density distribution. Journal of Geophysical Research, 2012, 117, .	3.3	38
139	Analytical approximation of transit time scattering due to magnetosonic waves. Geophysical Research Letters, 2015, 42, 1318-1325.	1.5	38
140	Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves. Journal of Geophysical Research: Space Physics, 2016, 121, 3212-3222.	0.8	38
141	Plasmaspheric hiss overview and relation to chorus. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 1636-1646.	0.6	36
142	Quantifying hissâ€driven energetic electron precipitation: A detailed conjunction event analysis. Geophysical Research Letters, 2014, 41, 1085-1092.	1.5	36
143	Resonant excitation of whistler waves by a helical electron beam. Geophysical Research Letters, 2016, 43, 2413-2421.	1.5	35
144	Rapid enhancement of lowâ€energy (<100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms. Journal of Geophysical Research: Space Physics, 2016, 121, 6430-6443.	0.8	34

#	Article	IF	CITATIONS
145	Erosion and refilling of the plasmasphere during a geomagnetic storm modeled by a neural network. Journal of Geophysical Research: Space Physics, 2017, 122, 7118-7129.	0.8	34
146	Oxygen Ion Dynamics in the Earth's Ring Current: Van Allen Probes Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 7786-7798.	0.8	34
147	Strong enhancement of 10–100 keV electron fluxes by combined effects of chorus waves and time domain structures. Geophysical Research Letters, 2016, 43, 4683-4690.	1.5	33
148	Electron butterfly distribution modulation by magnetosonic waves. Geophysical Research Letters, 2016, 43, 3051-3059.	1.5	33
149	The Characteristic Pitch Angle Distributions of 1ÂeV to 600ÂkeV Protons Near the Equator Based On Van Allen Probes Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 9464-9473.	0.8	33
150	Ion cyclotron absorption at the second harmonic of the oxygen gyrofrequency. Geophysical Research Letters, 1990, 17, 2225-2228.	1.5	32
151	Excitation of dayside chorus waves due to magnetic field line compression in response to interplanetary shocks. Journal of Geophysical Research: Space Physics, 2015, 120, 8327-8338.	0.8	32
152	On the parameter dependence of the whistler anisotropy instability. Journal of Geophysical Research: Space Physics, 2017, 122, 2001-2009.	0.8	32
153	On the energy source for diffuse Jovian auroral emissivity. Geophysical Research Letters, 2001, 28, 2751-2754.	1.5	31
154	Observations of MeV electrons in Jupiter's innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3. Geophysical Research Letters, 2017, 44, 4481-4488.	1.5	29
155	The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks. Journal of Geophysical Research: Space Physics, 2017, 122, 10,047.	0.8	29
156	Nonlinear evolution of EMIC waves in a uniform magnetic field: 2. Testâ€particle scattering. Journal of Geophysical Research, 2010, 115, .	3.3	27
157	Modeling Jupiter's synchrotron radiation. Geophysical Research Letters, 2001, 28, 903-906.	1.5	26
158	Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping. Geophysical Research Letters, 2017, 44, 12,057.	1.5	25
159	A multispacecraft event study of Pc5 ultralowâ€frequency waves in the magnetosphere and their external drivers. Journal of Geophysical Research: Space Physics, 2017, 122, 5132-5147.	0.8	24
160	Electrostatic and whistler instabilities excited by an electron beam. Physics of Plasmas, 2017, 24, .	0.7	24
161	Artificial Neural Networks for Determining Magnetospheric Conditions. , 2018, , 279-300.		24
162	Transitional behavior of different energy protons based on Van Allen Probes observations. Geophysical Research Letters, 2017, 44, 625-633.	1.5	20

#	Article	IF	CITATIONS
163	Effects of discreteness of chorus waves on quasilinear diffusionâ€based modeling of energetic electron dynamics. Journal of Geophysical Research: Space Physics, 2014, 119, 8848-8857.	0.8	19
164	Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event. Journal of Geophysical Research: Space Physics, 2016, 121, 8300-8316.	0.8	19
165	Chorus Wave Modulation of Langmuir Waves in the Radiation Belts. Geophysical Research Letters, 2017, 44, 11,713.	1.5	18
166	Understanding the Origin of Jupiter's Diffuse Aurora Using Juno's First Perijove Observations. Geophysical Research Letters, 2017, 44, 10,162.	1.5	17
167	Diffuse auroral precipitation in the jovian upper atmosphere and magnetospheric electron flux variability. Icarus, 2005, 178, 406-416.	1.1	15
168	Comparison of formulas for resonant interactions between energetic electrons and oblique whistler-mode waves. Physics of Plasmas, 2015, 22, 052902.	0.7	15
169	Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region. Journal of Geophysical Research: Space Physics, 2017, 122, 10,235.	0.8	15
170	Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales. Journal of Geophysical Research: Space Physics, 2017, 122, 1871-1882.	0.8	12
171	"Zipperâ€like―periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations. Journal of Geophysical Research: Space Physics, 2017, 122, 1600-1610.	0.8	12
172	Analysis of plasmaspheric hiss wave amplitudes inferred from lowâ€altitude POES electron data: Validation with conjunctive Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 2015, 120, 8681-8691.	0.8	7
173	Electron butterfly distributions at particular magnetic latitudes observed during Juno's perijove pass. Geophysical Research Letters, 2017, 44, 4489-4496.	1.5	6
174	Searching for low-altitude magnetic field anomalies by using observations of the energetic particle loss cone on JUNO. Geophysical Research Letters, 2017, 44, 4472-4480.	1.5	3
175	Electron Flux Enhancements at <i>L</i> = 4.2 Observed by Global Positioning System Satellites: Relationship With Solar Wind and Geomagnetic Activity. Journal of Geophysical Research: Space Physics, 2018, 123, 6189-6206.	0.8	3