
Shuaiwei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8334694/publications.pdf Version: 2024-02-01

SHUAIWEI WANC

#	Article	IF	CITATIONS
1	<scp>Vacancy–vacancy</scp> pairs induced new phase formation in carbon boride: A design principle to achieve superior performance Li/Naâ€ion battery anodes. EcoMat, 2022, 4, .	6.8	16
2	Dirac Nodal Line Semimetal of Three-Dimensional Cross-Linked Graphene Network as Anode Materials for Li-Ion Battery beyond Graphite. ACS Applied Energy Materials, 2021, 4, 2091-2097.	2.5	6
3	Auxetic Carbon Honeycomb: Strain-Tunable Phase Transitions and Novel Negative Poisson's Ratio. ACS Omega, 2021, 6, 14896-14902.	1.6	3
4	Reconfiguring graphene to achieve intrinsic negative Poisson's ratio and strain-tunable bandgap. Nanotechnology, 2021, 32, 415705.	1.3	2
5	A Dirac nodal surface semi-metallic carbon-based structure as a universal anode material for metal-ion batteries with high performance. Physical Chemistry Chemical Physics, 2021, 23, 18744-18751.	1.3	3
6	Bco-C24: A new 3D Dirac nodal line semi-metallic carbon honeycomb for high performance metal-ion battery anodes. Carbon, 2020, 159, 542-548.	5.4	30
7	Adsorption Mechanism and Highâ€Performance Metalâ€ion Batteries Anode Material for Semimetal Carbon Honeycomb. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000433.	0.8	1
8	A new Dirac nodal-ring semimetal made of 3D cross-linked graphene networks as lithium ion battery anode materials. Nanoscale, 2020, 12, 12985-12992.	2.8	9
9	Reconfiguring graphene for high-performance metal-ion battery anodes. Energy Storage Materials, 2019, 16, 619-624.	9.5	143
10	Mechanical deformation: A feasible route for reconfiguration of inner interfaces to modulate the high performance of three-dimensional porous carbon material anodes in stretchable lithium-Ion batteries. Journal of Colloid and Interface Science, 2019, 555, 431-437.	5.0	8
11	Two-Dimensional Carbon-Based Auxetic Materials for Broad-Spectrum Metal-Ion Battery Anodes. Journal of Physical Chemistry Letters, 2019, 10, 3269-3275.	2.1	64
12	Stabilization of two-dimensional penta-silicene for flexible lithium-ion battery anodes <i>via</i> surface chemistry reconfiguration. Physical Chemistry Chemical Physics, 2019, 21, 1029-1037.	1.3	27
13	Popgraphene: a new 2D planar carbon allotrope composed of 5–8–5 carbon rings for high-performance lithium-ion battery anodes from bottom-up programming. Journal of Materials Chemistry A, 2018, 6, 6815-6821.	5.2	212
14	Highly negative Poisson's ratio in a flexible two-dimensional tungsten carbide monolayer. Physical Chemistry Chemical Physics, 2018, 20, 18924-18930.	1.3	42
15	Semimetallic carbon honeycombs: new three-dimensional graphene allotropes with Dirac cones. Nanoscale, 2018, 10, 2748-2754.	2.8	43
16	Modulation of the electronic and mechanical properties of phagraphene via hydrogenation and fluorination. Physical Chemistry Chemical Physics, 2017, 19, 11771-11777.	1.3	35
17	Lattice thermal conductivity of Î-graphyne — A molecular dynamics study. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 90, 116-122.	1.3	17
18	Fracture behaviors of brittle and ductile 2D carbon structures under uniaxial tensile stress. Carbon, 2017, 111, 486-492.	5.4	59

Shuaiwei Wang

#	Article	IF	CITATIONS
19	Tunable thermal transport and mechanical properties of graphyne heterojunctions. Physical Chemistry Chemical Physics, 2016, 18, 24210-24218.	1.3	49
20	Large-Scale Molecular Simulations on the Mechanical Response and Failure Behavior of a defective Graphene: Cases of 5–8–5 Defects. Scientific Reports, 2015, 5, 14957.	1.6	50
21	Strength and failure behavior of a graphene sheet containing bi-grain-boundaries. RSC Advances, 2014, 4, 54677-54683.	1.7	61
22	Mechanical Properties and Failure Mechanisms of Graphene under a Central Load. ChemPhysChem, 2014, 15, 2749-2755.	1.0	38
23	New Ab Initio Based Pair Potential for Accurate Simulation of Phase Transitions in ZnO. Journal of Physical Chemistry C, 2014, 118, 11050-11061.	1.5	45
24	Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Physical Review B, 1991, 44, 13298-13307.	1.1	1,315