
Christine Eva Antonia Kirschhock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8334673/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchical COK-X Materials for Applications in Catalysis and Adsorptive Separation and Controlled Release. Frontiers in Chemical Engineering, 2022, 4, .	1.3	4
2	Impact of residual sodium cations in azonia-spiro templates on the formation of large and extra-large pore zeolites. Microporous and Mesoporous Materials, 2022, , 111891.	2.2	1
3	HSIL-Based Synthesis of Ultracrystalline K,Na-JBW, a Zeolite Exhibiting Exceptional Framework Ordering and Flexibility. Chemistry of Materials, 2022, 34, 7159-7166.	3.2	5
4	Ion-Pairs in Aluminosilicate-Alkali Synthesis Liquids Determine the Aluminum Content and Topology of Crystallizing Zeolites. Chemistry of Materials, 2022, 34, 7150-7158.	3.2	13
5	Nucleation of Porous Crystals from Ion-Paired Prenucleation Clusters. Chemistry of Materials, 2022, 34, 7139-7149.	3.2	11
6	Using Moving Electrode Impedance Spectroscopy to Monitor Particle Sedimentation. IEEE Sensors Journal, 2021, 21, 9636-9641.	2.4	5
7	Super-ions of sodium cations with hydrated hydroxide anions: inorganic structure-directing agents in zeolite synthesis. Materials Horizons, 2021, 8, 2576-2583.	6.4	16
8	Chlorination of a Zeolitic-Imidazolate Framework Tunes Packing and van der Waals Interaction of Carbon Dioxide for Optimized Adsorptive Separation. Journal of the American Chemical Society, 2021, 143, 4962-4968.	6.6	21
9	NMR Crystallography Reveals Carbonate Induced Alâ€Ordering in ZnAl Layered Double Hydroxide. Chemistry - A European Journal, 2021, 27, 15944-15953.	1.7	9
10	Monitoring Zeolite Formation with Moving Electrode Conductometry. , 2021, , .		0
11	Moving Electrode Impedance Spectroscopy for Accurate Conductivity Measurements of Corrosive Ionic Media. ACS Sensors, 2020, 5, 3392-3397.	4.0	9
12	Framework flexibility-driven CO ₂ adsorption on a zeolite. Materials Horizons, 2020, 7, 1528-1532.	6.4	39
13	A Porous POSiSil Suited for Pressureâ€Driven Reversible Confinement of Solutions: PSSâ€2. Chemistry - A European Journal, 2019, 25, 12957-12965.	1.7	5
14	Alumina: discriminative analysis using 3D correlation of solid-state NMR parameters. Chemical Society Reviews, 2019, 48, 134-156.	18.7	85
15	Catalytic activation of all-silica COK-14 zeolite through alumination and particle size reduction using wet ball milling. Catalysis Today, 2019, 334, 3-12.	2.2	8
16	Monitoring Particle Sedimentation in Conductive Suspensions with Moving Electrode Impedance Spectroscopy. , 2019, , .		1
17	Evolution of the crystal growth mechanism of zeolite W (MER) with temperature. Microporous and Mesoporous Materials, 2019, 274, 379-384.	2.2	23
18	Unraveling Direct Formation of Hierarchical Zeolite Beta by Dynamic Light Scattering, Small Angle X-ray Scattering, and Liquid and Solid-State NMR: Insights at the Supramolecular Level. Chemistry of Materials, 2018, 30, 2676-2686.	3.2	15

#	Article	IF	CITATIONS
19	EU-7 zeolite: a synthetic BIK type zeolite with high hydrothermal stability. Chemical Communications, 2018, 54, 5626-5629.	2.2	6
20	An in situ investigation of the water-induced phase transformation of UTSA-74 to MOF-74(Zn). CrystEngComm, 2017, 19, 4152-4156.	1.3	20
21	Hierarchical self-supported ZnAlEu LDH nanotubes hosting luminescent CdTe quantum dots. Chemical Communications, 2017, 53, 7341-7344.	2.2	19
22	Alternating Copolymer of Double Four Ring Silicate and Dimethyl Silicone Monomer–PSSâ€1. Chemistry - A European Journal, 2017, 23, 11286-11293.	1.7	5
23	1D-2D-3D Transformation Synthesis of Hierarchical Metal–Organic Framework Adsorbent for Multicomponent Alkane Separation. Journal of the American Chemical Society, 2017, 139, 819-828.	6.6	62
24	Postsynthetic High-Alumina Zeolite Crystal Engineering in Organic-Free Hyper-Alkaline Media. Chemistry of Materials, 2017, 29, 629-638.	3.2	17
25	Absolute Quantification of Water in Microporous Solids with ¹ H Magic Angle Spinning NMR and Standard Addition. Analytical Chemistry, 2017, 89, 6940-6943.	3.2	22
26	3D porous nanostructured platinum prepared using atomic layer deposition. Journal of Materials Chemistry A, 2017, 5, 19007-19016.	5.2	10
27	Thermal processing of aqueous AZO inks towards functional TCO thin films. Journal of Alloys and Compounds, 2017, 690, 360-368.	2.8	11
28	ZIF-8 as Nonlinear Optical Material: Influence of Structure and Synthesis. Chemistry of Materials, 2016, 28, 3203-3209.	3.2	57
29	Zeolite Beta Formation from Clear Sols: Silicate Speciation, Particle Formation and Crystallization Monitored by Complementary Analysis Methods. Chemistry - A European Journal, 2016, 22, 15307-15319.	1.7	21
30	PdPb-Catalyzed Decarboxylation of Proline to Pyrrolidine: Highly Selective Formation of a Biobased Amine in Water. ACS Catalysis, 2016, 6, 7303-7310.	5.5	27
31	Photoluminescence Blinking of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods Induced by Surface Traps. ACS Omega, 2016, 1, 148-159.	1.6	76
32	Anatase TiO2 nanoparticle coating on porous COK-12 platelets as highly active and reusable photocatalysts. RSC Advances, 2016, 6, 46678-46685.	1.7	11
33	Intrusion–extrusion spring performance of –COK-14 zeolite enhanced by structural changes. Physical Chemistry Chemical Physics, 2016, 18, 18795-18801.	1.3	11
34	Multifunctional β-NaGdF ₄ :Ln ³⁺ (Ln = Yb, Er, Dy) nanoparticles with NIR to visible upconversion and high transverse relaxivity: a potential bimodal contrast agent for high-field MRI and optical imaging. RSC Advances, 2016, 6, 61443-61448.	1.7	20
35	Synthesis of an IWW-type germanosilicate zeolite using 5-azonia-spiro[4,4]nonane as a structure directing agent. New Journal of Chemistry, 2016, 40, 4319-4324.	1.4	11
36	An Inner-/Outer-Sphere Stabilized Sn Active Site in β-Zeolite: Spectroscopic Evidence and Kinetic Consequences. ACS Catalysis, 2016, 6, 31-46.	5.5	89

#	Article	IF	CITATIONS
37	Catalyst Design by NH ₄ OH Treatment of USY Zeolite. Advanced Functional Materials, 2015, 25, 7130-7144.	7.8	76
38	A Flexible Photoactive Titanium Metal–Organic Framework Based on a [Ti ^{IV} ₃ (μ ₃ â€O)(O) ₂ (COO) ₆] Cluster. Angewandte Chemie - International Edition, 2015, 54, 13912-13917.	7.2	103
39	Hierarchical Zeolite: Catalyst Design by NH ₄ OH Treatment of USY Zeolite (Adv. Funct.) Tj ETQq1 1	0.784314 7.8	rgǥT /Overloo
40	Electrochemical impedance spectroscopy for in situ monitoring of early zeolite formation. , 2015, , .		1
41	Conceptual Frame Rationalizing the Self-Stabilization of H-USY Zeolites in Hot Liquid Water. ACS Catalysis, 2015, 5, 754-768.	5.5	70
42	Cation Exchange Properties of Zeolites in Hyper Alkaline Aqueous Media. Environmental Science & Technology, 2015, 49, 1729-1737.	4.6	15
43	Chabazite: Stable Cation-Exchanger in Hyper Alkaline Concrete Pore Water. Environmental Science & Technology, 2015, 49, 2358-2365.	4.6	13
44	Self-Assembly of Pluronic F127—Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures. Chemistry of Materials, 2015, 27, 5161-5169.	3.2	47
45	Gallium Oxide Nanorods: Novel, Templateâ€Free Synthesis and High Catalytic Activity in Epoxidation Reactions. Angewandte Chemie - International Edition, 2014, 53, 1585-1589.	7.2	63
46	Biogas upgrading through kinetic separation of carbon dioxide and methane over Rb- and Cs-ZK-5 zeolites. RSC Advances, 2014, 4, 62511-62524.	1.7	36
47	Enhanced Selfâ€Assembly of Metal Oxides and Metalâ€Organic Frameworks from Precursors with Magnetohydrodynamically Induced Longâ€Lived Collective Spin States. Advanced Materials, 2014, 26, 5173-5178.	11.1	8
48	Single-step alcohol-free synthesis of core–shell nanoparticles of β-casein micelles and silica. RSC Advances, 2014, 4, 25650-25657.	1.7	3
49	Selfâ€Assembly: Enhanced Selfâ€Assembly of Metal Oxides and Metalâ€Organic Frameworks from Precursors with Magnetohydrodynamically Induced Longâ€Lived Collective Spin States (Adv. Mater. 30/2014). Advanced Materials, 2014, 26, 5223-5223.	11.1	0
50	Multidiagnostic analysis of silicate speciation in clear solutions/sols for zeolite synthesis. Microporous and Mesoporous Materials, 2014, 189, 158-162.	2.2	17
51	Co-assessment of cell cycle and micronucleus frequencies demonstrates the influence of serum on the <i>in vitro</i> genotoxic response to amorphous monodisperse silica nanoparticles of varying sizes. Nanotoxicology, 2014, 8, 876-884.	1.6	44
52	Flexibility versus rigidity: what determines the stability of zeolite frameworks? A case study. Materials Horizons, 2014, 1, 582-587.	6.4	13
53	Hierarchization of USY Zeolite by NH ₄ OH. A Postsynthetic Process Investigated by NMR and XRD. Journal of Physical Chemistry C, 2014, 118, 22573-22582.	1.5	81
54	NMR Evidence for Specific Germanium Siting in IM-12 Zeolite. Chemistry of Materials, 2014, 26, 5556-5565.	3.2	41

#	Article	IF	CITATIONS
55	A zirconium squarate metal–organic framework with modulator-dependent molecular sieving properties. Chemical Communications, 2014, 50, 10055-10058.	2.2	64
56	Local transformation of ZIF-8 powders and coatings into ZnO nanorods for photocatalytic application. Nanoscale, 2014, 6, 2056.	2.8	105
57	Molybdenum–vanadium–antimony mixed oxide catalyst for isobutane partial oxidation synthesized using magneto hydrodynamic forces. Applied Catalysis A: General, 2014, 474, 18-25.	2.2	10
58	Adsorption and Separation of CO ₂ on KFI Zeolites: Effect of Cation Type and Si/Al Ratio on Equilibrium and Kinetic Properties. Langmuir, 2013, 29, 4998-5012.	1.6	66
59	Alkaline cations directing the transformation of FAU zeolites into five different framework types. Chemical Communications, 2013, 49, 11737.	2.2	84
60	Catalytic activity of germanosilicate UTL zeolite in bifunctional hydroisomerisation of n-decane. Microporous and Mesoporous Materials, 2013, 166, 153-160.	2.2	22
61	Selective Hydroalkoxylation of 1â€Hexene with 1â€Propanol and 1â€Butanol over Zeolite Beta Catalyst. ChemCatChem, 2013, 5, 576-581.	1.8	9
62	Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking. Journal of Catalysis, 2013, 300, 70-80.	3.1	132
63	Erbium enhanced formation and growth of photoluminescent Er/Si nanocrystals. Thin Solid Films, 2013, 536, 196-201.	0.8	11
64	Zn–Co Double Metal Cyanides as Heterogeneous Catalysts for Hydroamination: A Structure–Activity Relationship. ACS Catalysis, 2013, 3, 597-607.	5.5	67
65	COKâ€16: A Cationâ€Exchanging Metal–Organic Framework Hybrid. ChemPlusChem, 2013, 78, 402-406.	1.3	15
66	Modeling and data analysis of a multimode resonator sensor loaded with viscous and viscoelastic fluids. , 2012, , .		4
67	Entropyâ€Driven Chemisorption of NO _{<i>x</i>} on Phosphotungstic Acid. Angewandte Chemie - International Edition, 2012, 51, 11010-11013.	7.2	4
68	On the role of hydrodynamic forces in vanadium oxide nanoscroll synthesis. Catalysis Today, 2012, 192, 63-66.	2.2	5
69	Interplay of Metal Node and Amine Functionality in NH ₂ -MIL-53: Modulating Breathing Behavior through Intra-framework Interactions. Langmuir, 2012, 28, 12916-12922.	1.6	98
70	Anisotropic Atomic Layer Deposition Profiles of TiO ₂ in Hierarchical Silica Material with Multiple Porosity. Chemistry of Materials, 2012, 24, 2775-2780.	3.2	26
71	Design of zeolite by inverse sigma transformation. Nature Materials, 2012, 11, 1059-1064.	13.3	161
72	Investigation of the cytotoxicity of nanozeolites A and Y. Nanotoxicology, 2012, 6, 472-485.	1.6	30

#	Article	IF	CITATIONS
73	NH ₂ -MIL-53(Al): A High-Contrast Reversible Solid-State Nonlinear Optical Switch. Journal of the American Chemical Society, 2012, 134, 8314-8317.	6.6	144
74	Chromateâ€Mediated Oneâ€Step Quantitative Transformation of PW ₁₂ into P ₂ W ₂₀ Polyoxometalates. European Journal of Inorganic Chemistry, 2012, 2012, 3852-3858.	1.0	5
75	Copper Benzene Tricarboxylate Metal–Organic Framework with Wide Permanent Mesopores Stabilized by Keggin Polyoxometallate Ions. Journal of the American Chemical Society, 2012, 134, 10911-10919.	6.6	112
76	Recovery and reuse of heteropolyacid catalyst in liquid reaction medium through reversible encapsulation in Cu3(BTC)2 metal–organic framework. Chemical Science, 2012, 3, 1847.	3.7	41
77	Selective Catalytic Oxidation of Ammonia into Dinitrogen over a Zeoliteâ€Supported Ruthenium Dioxide Catalyst. ChemCatChem, 2012, 4, 1162-1166.	1.8	16
78	Design of a Cobalt–Zeolite Catalyst for Semiâ€Linear Higherâ€Olefin Synthesis. ChemCatChem, 2012, 4, 1245-1248.	1.8	6
79	Adsorption and Separation of Light Gases on an Aminoâ€Functionalized Metal–Organic Framework: An Adsorption and Inâ€Situ XRD Study. ChemSusChem, 2012, 5, 740-750.	3.6	115
80	Enthalpic effects in the adsorption of alkylaromatics on the metal-organic frameworks MIL-47 and MIL-53. Microporous and Mesoporous Materials, 2012, 157, 82-88.	2.2	33
81	Modelling of synchrotron SAXS patterns of silicalite-1 zeolite during crystallization. Physical Chemistry Chemical Physics, 2011, 13, 4318.	1.3	22
82	Hydrolysis of carboxyesters promoted by vanadium(<scp>v</scp>) oxyanions. Dalton Transactions, 2011, 40, 295-300.	1.6	26
83	Catalytic activity and extra-large pores of germanosilicate UTL zeolite demonstrated with decane test reaction. Catalysis Science and Technology, 2011, 1, 246.	2.1	35
84	Stability improvement of Cu3(BTC)2 metal–organic frameworks under steaming conditions by encapsulation of a Keggin polyoxometalate. Chemical Communications, 2011, 47, 8037.	2.2	98
85	Model System to Study the Influence of Aggregation on the Hemolytic Potential of Silica Nanoparticles. Chemical Research in Toxicology, 2011, 24, 1869-1875.	1.7	48
86	Zeolites X and A crystallization compared by simultaneous UV/VIS-Raman and X-ray diffraction. Physical Chemistry Chemical Physics, 2011, 13, 13730.	1.3	39
87	²⁹ Si NMR and UVâ^'Raman Investigation of Initial Oligomerization Reaction Pathways in Acid-Catalyzed Silica Solâ^'Gel Chemistry. Journal of Physical Chemistry C, 2011, 115, 3562-3571.	1.5	72
88	Continuous Synthesis Process of Hexagonal Nanoplates of <i>P</i> 6 <i>m</i> Ordered Mesoporous Silica. Journal of the American Chemical Society, 2011, 133, 13737-13745.	6.6	54
89	Viscoelasticity Sensor with Resonance Tuning and Low-Cost Interface. Procedia Engineering, 2011, 25, 623-626.	1.2	8
90	Effect of Keggin polyoxometalate on Cu(ii) speciation and its role in the assembly of Cu3(BTC)2 metal–organic framework. Journal of Materials Chemistry, 2011, 21, 9768.	6.7	33

#	Article	IF	CITATIONS
91	NO _{<i>x</i>} Adsorption Site Engineering in Ru/Ba,Na–Y Zeolite. Chemistry of Materials, 2011, 23, 4606-4611.	3.2	18
92	UV-Raman and ²⁹ Si NMR Spectroscopy Investigation of the Nature of Silicate Oligomers Formed by Acid Catalyzed Hydrolysis and Polycondensation of Tetramethylorthosilicate. Journal of Physical Chemistry C, 2011, 115, 11077-11088.	1.5	33
93	Simple synthesis recipes of porous materials. Microporous and Mesoporous Materials, 2011, 140, 2-8.	2.2	53
94	Biobutanol Separation with the Metal–Organic Framework ZIFâ€8. ChemSusChem, 2011, 4, 1074-1077.	3.6	192
95	Catalytic and molecular separation properties of Zeogrids and Zeotiles. Catalysis Today, 2011, 168, 17-27.	2.2	15
96	Heteropolyacid encapsulated in Cu3(BTC)2 nanocrystals: An effective esterification catalyst. Catalysis Today, 2011, 171, 275-280.	2.2	76
97	Direct growth of Keggin polyoxometalates incorporated copper 1,3,5-benzenetricarboxylate metal organic framework films on a copper metal substrate. Thin Solid Films, 2011, 519, 5437-5440.	0.8	20
98	Separation of Styrene and Ethylbenzene on Metalâ^'Organic Frameworks: Analogous Structures with Different Adsorption Mechanisms. Journal of the American Chemical Society, 2010, 132, 15277-15285.	6.6	195
99	Decane Hydroisomerization Test Probing Catalytic Activity and Selectivity of Aluminum and Boron Substituted Extra-Large Pore UTL Zeolite. Topics in Catalysis, 2010, 53, 1374-1380.	1.3	18
100	Alkene epoxidation with mesoporous materials assembled from TS-1 seeds – Is there a hierarchical pore system?. Journal of Catalysis, 2010, 269, 367-375.	3.1	42
101	Comment on "MELâ€type Pureâ€Silica Zeolite Nanocrystals Prepared by an Evaporationâ€Assisted Twoâ€Sta Synthesis Method as Ultraâ€Lowâ€ <i>k</i> Materialsâ€. Advanced Functional Materials, 2010, 20, 2377-2379.	^{ge} 7.8	9
102	Investigation of the Mechanism of Colloidal Silicaliteâ€1 Crystallization by Using DLS, SAXS, and ²⁹ Si NMR Spectroscopy. Chemistry - A European Journal, 2010, 16, 2764-2774.	1.7	60
103	Direct Observation of Molecularâ€Level Template Action Leading to Selfâ€Assembly of a Porous Framework. Chemistry - A European Journal, 2010, 16, 3926-3932.	1.7	106
104	A Rational Approach to the Ionothermal Synthesis of an AlPO ₄ Molecular Sieve with an LTAâ€₹ype Framework. Angewandte Chemie - International Edition, 2010, 49, 4585-4588.	7.2	61
105	Shear wave sensors for viscoelastic properties. Procedia Engineering, 2010, 5, 1316-1319.	1.2	2
106	Analysis and experimental verification of a metallic suspended plate resonator for viscosity sensing. Sensors and Actuators A: Physical, 2010, 162, 418-424.	2.0	62
107	Synthesis and characterization of the new cyclosilicate hydrate (hexamethyleneimine)4·[Si8O16(OH)4]·12H2O. Microporous and Mesoporous Materials, 2010, 130, 14-20.	2.2	6
108	Modeling of NOx adsorption–desorption–reduction cycles on a ruthenium loaded Na–Y zeolite. Applied Catalysis B: Environmental, 2010, 97, 13-20.	10.8	9

#	Article	IF	CITATIONS
109	Hexakis(adamantyltrimethylammonium) cyclooctasilicate tetratetracontahydrate. Acta Crystallographica Section C: Crystal Structure Communications, 2010, 66, o619-o622.	0.4	0
110	Sol-gel synthesis of micro- and mesoporous silica in strong mineral acid. Studies in Surface Science and Catalysis, 2010, , 801-804.	1.5	2
111	Fine-tuning of Vanadium Oxide Nanotubes. Studies in Surface Science and Catalysis, 2010, , 249-252.	1.5	4
112	Investigation of Nanoparticles Occurring in the Colloidal Silicalite-1 Zeolite Crystallization Process Using Dissolution Experiments. Chemistry of Materials, 2010, 22, 3619-3629.	3.2	21
113	Reduction of Se(IV) in Boom Clay: XAS Solid Phase Speciation. Environmental Science & Technology, 2010, 44, 6649-6655.	4.6	29
114	Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models. Nanotoxicology, 2010, 4, 382-395.	1.6	91
115	Methods for in situ spectroscopic probing of the synthesis of a zeolite. Chemical Society Reviews, 2010, 39, 4626.	18.7	94
116	Influence of size, surface area and microporosity on the <i>in vitro</i> cytotoxic activity of amorphous silica nanoparticles in different cell types. Nanotoxicology, 2010, 4, 307-318.	1.6	122
117	Synthesis and Characterization of Stable Monodisperse Silica Nanoparticle Sols for <i>in Vitro</i> Cytotoxicity Testing. Langmuir, 2010, 26, 328-335.	1.6	137
118	Convenient synthesis of Cu3(BTC)2 encapsulated Keggin heteropolyacid nanomaterial for application in catalysis. Chemical Communications, 2010, 46, 8186.	2.2	158
119	Temperature swing adsorption of NOx over Keggin type heteropolyacids. Energy and Environmental Science, 2010, 3, 910.	15.6	17
120	Reversible NOx storage over Ru/Na–Y zeolite. Chemical Science, 2010, 1, 763.	3.7	12
121	Kinetics of intermediate-mediated self-assembly in nanosized materials: A generic model. Journal of Chemical Physics, 2010, 132, 164701.	1.2	11
122	Effects of Silica Sources on Nanoporous Organosilicate Films Templated with Tetraalkylammonium Cations. Materials Research Society Symposia Proceedings, 2009, 1156, 1.	0.1	0
123	Framework Breathing in the Vapourâ€Phase Adsorption and Separation of Xylene Isomers with the Metal–Organic Framework MILâ€53. Chemistry - A European Journal, 2009, 15, 7724-7731.	1.7	158
124	Condition monitoring of viscous liquids using microsensors. Elektrotechnik Und Informationstechnik, 2009, 126, 164-172.	0.7	0
125	Multi-level Modeling of Silica–Template Interactions During Initial Stages of Zeolite Synthesis. Topics in Catalysis, 2009, 52, 1261-1271.	1.3	31
126	Forty Years of Designing Catalytic and Adsorptive Sites in FAU Type Zeolites at K.U. Leuven. Topics in Catalysis, 2009, 52, 1119-1130.	1.3	8

#	Article	IF	CITATIONS
127	A New Paradigm of Crystallization Arising from Non-standard Nucleation Pathways. Microgravity Science and Technology, 2009, 21, 47-51.	0.7	6
128	Characterization of spin-on zeolite films prepared from Silicalite-1 nanoparticle suspensions. Microporous and Mesoporous Materials, 2009, 118, 458-466.	2.2	20
129	Quantitative Three-Dimensional Modeling of Zeotile Through Discrete Electron Tomography. Journal of the American Chemical Society, 2009, 131, 4769-4773.	6.6	66
130	Connectivity Analysis of the Clear Sol Precursor of Silicalite: Are Nanoparticles Aggregated Oligomers or Silica Particles?. Journal of Physical Chemistry C, 2009, 113, 20827-20836.	1.5	51
131	Ordered End-Member of ZSM-48 Zeolite Family. Chemistry of Materials, 2009, 21, 371-380.	3.2	19
132	Viscosity sensing in heated alkaline zeolite synthesis media. Physical Chemistry Chemical Physics, 2009, 11, 2854-2857.	1.3	22
133	EXAFS and DFT: Evidence for the $[Tci \in O]2+$ core. Dalton Transactions, 2009, , 9398.	1.6	8
134	Nanoporous Organosilicate Films Prepared in Acidic Conditions Using Tetraalkylammonium Bromide Porogens. Advanced Functional Materials, 2008, 18, 3332-3339.	7.8	9
135	Evidence of Large Voids in Pureâ€Silicaâ€Zeolite Lowâ€ <i>k</i> Dielectrics Synthesized by Spinâ€on of Nanoparticle Suspensions. Advanced Materials, 2008, 20, 3110-3116.	11.1	34
136	Selective Adsorption and Separation of <i>ortho</i> -Substituted Alkylaromatics with the Microporous Aluminum Terephthalate MIL-53. Journal of the American Chemical Society, 2008, 130, 14170-14178.	6.6	376
137	MFI Fingerprint: How Pentasil-Induced IR Bands Shift during Zeolite Nanogrowth. Journal of Physical Chemistry C, 2008, 112, 9186-9191.	1.5	59
138	Zeolite-Inspired Low-kDielectrics Overcoming Limitations of Zeolite Films. Journal of the American Chemical Society, 2008, 130, 17528-17536.	6.6	36
139	Reaction of Trimethylchlorosilane in Spin-On Silicalite-1 Zeolite Film. Langmuir, 2008, 24, 4894-4900.	1.6	21
140	Nominal and Effective Dosimetry of Silica Nanoparticles in Cytotoxicity Assays. Toxicological Sciences, 2008, 104, 155-162.	1.4	183
141	Ultraviolet-Assisted Curing of Organosilicate Glass Low-k Dielectric by Excimer Lamps. Journal of the Electrochemical Society, 2008, 155, G231.	1.3	22
142	Optical Property Changes in Low-k Films upon Ultraviolet-Assisted Curing. Journal of the Electrochemical Society, 2008, 155, G115.	1.3	42
143	Aggregation and crystallisation in space. Europhysics News, 2008, 39, 25-27.	0.1	1
144	Micro-meso-materials from TS-1 seeds: structure-properties. Studies in Surface Science and Catalysis, 2007, , 276-281.	1.5	4

#	Article	IF	CITATIONS
145	Ultra-violet-assisted cure of spin-on silicalite-1 films. Studies in Surface Science and Catalysis, 2007, 170, 594-599.	1.5	3
146	What has become of the Silicalite nanoslab? – Recent insights into key steps of template-directed silicalite-1 formation. Studies in Surface Science and Catalysis, 2007, 170, 1473-1478.	1.5	6
147	Prospects of transition interface sampling simulations for the theoretical study of zeolite synthesis. Physical Chemistry Chemical Physics, 2007, 9, 1044.	1.3	11
148	Characterization of a Molecular Sieve Coating Using Ellipsometric Porosimetry. Langmuir, 2007, 23, 12811-12816.	1.6	43
149	Combined NMR, SAXS, and DLS Study of Concentrated Clear Solutions Used in Silicalite-1 Zeolite Synthesis. Chemistry of Materials, 2007, 19, 3448-3454.	3.2	82
150	TEM Observation of Aggregation Steps in Room-Temperature Silicalite-1 Zeolite Formation. Journal of Physical Chemistry C, 2007, 111, 14283-14285.	1.5	41
151	Effect of Gravity on the Gelation of Silica Sols. Chemistry of Materials, 2007, 19, 660-664.	3.2	13
152	Ultraviolet-Assisted Curing of Polycrystalline Pure-Silica Zeolites:  Hydrophobization, Functionalization, and Cross-Linking of Grains. Journal of the American Chemical Society, 2007, 129, 9288-9289.	6.6	38
153	Formation of ZSMâ€22 Zeolite Catalytic Particles by Fusion of Elementary Nanorods. Chemistry - A European Journal, 2007, 13, 10070-10077.	1.7	77
154	Selective Adsorption and Separation of Xylene Isomers and Ethylbenzene with the Microporous Vanadium(IV) Terephthalate MIL-47. Angewandte Chemie - International Edition, 2007, 46, 4293-4297.	7.2	496
155	Removal of cyclopentadiene from 1-octene by transition metal containing zeolites – Part 2: Stabilization of CoCaX zeolite by its cation distribution. Microporous and Mesoporous Materials, 2007, 103, 11-19.	2.2	27
156	Removal of cyclopentadiene from 1-octene by transition metal containing zeolites. Part 1: Screening of the adsorption properties. Microporous and Mesoporous Materials, 2007, 103, 1-10.	2.2	10
157	Prototype high-throughput system for hydrothermal synthesis and X-ray diffraction of microporous and mesoporous materials. Microporous and Mesoporous Materials, 2006, 90, 62-68.	2.2	19
158	Catalytic Carbon Oxidation Over Ruthenium-Based Catalysts. Angewandte Chemie - International Edition, 2006, 45, 3106-3109.	7.2	45
159	Zeolite Low-k Film Properties Dependence on Nanocrystal Size. Materials Research Society Symposia Proceedings, 2006, 914, 1.	0.1	2
160	Zeotile-2: A microporous analogue of MCM-48. Solid State Sciences, 2005, 7, 861-867.	1.5	12
161	Rotational Entropy Driven Separation of Alkane/Isoalkane Mixtures in Zeolite Cages. Angewandte Chemie - International Edition, 2005, 44, 400-403.	7.2	53
162	Design and Synthesis of Hierarchical Materials from Ordered Zeolitic Building Units. Chemistry - A European Journal, 2005, 11, 4306-4313.	1.7	101

#	Article	IF	CITATIONS
163	Synthesis and characterization of zeogrid molecular sieves. Comptes Rendus Chimie, 2005, 8, 379-390.	0.2	9
164	Unexpected microgravity effect during the self-organization of silicalite-1 nanoslabs. Microgravity Science and Technology, 2005, 16, 74-78.	0.7	0
165	Template-Aluminosilicate Structures at the Early Stages of Zeolite ZSM-5 Formation. A Combined Preparative, Solid-state NMR, and Computational Study. Journal of Physical Chemistry B, 2005, 109, 22767-22774.	1.2	53
166	Characterization of COK-5, Member of a New Family of Zeolite Material with Multiple Channel Systems. Chemistry of Materials, 2005, 17, 5618-5624.	3.2	11
167	Decane hydroconversion on bifunctional Zeogrid and nano-zeolite assembled from aluminosilicate nanoslabs of MFI framework type. Applied Catalysis A: General, 2004, 257, 7-17.	2.2	29
168	Adsorptive separation of NOx in presence of SOx from gas mixtures simulating lean burn engine exhaust by pressure swing process on Na–Y zeolite. Applied Catalysis B: Environmental, 2004, 48, 65-76.	10.8	22
169	Adsorption Chemistry of Sulfur Dioxide in Hydrated Na–Y Zeolite. Angewandte Chemie - International Edition, 2004, 43, 3722-3724.	7.2	11
170	Novel MoVSbO -type catalysts for selective isobutane oxidation. Catalysis Today, 2004, 91-92, 265-269.	2.2	12
171	Ultra-thin zeolite films prepared by spin-coating Silicalite-1 precursor solutions. Chemical Physics Letters, 2003, 382, 404-409.	1.2	23
172	Preferential Siting of Iron Atoms in an MFI-type Ferrisilicate Zeolite Framework: An Attempt to Explain Experimental Data with TPA-Silicate Solution Chemistry. European Journal of Inorganic Chemistry, 2003, 2003, 1296-1298.	1.0	4
173	Tiling Silicalite-1 Nanoslabs into 3D Mosaics. Advanced Materials, 2003, 15, 1705-1707.	11.1	90
174	Microgravity effect on the self-organization of silicalite-1 nanoslabs. Advances in Space Research, 2003, 32, 259-263.	1.2	8
175	Combined in situ 29Si NMR and small-angle X-ray scattering study of precursors in MFI zeolite formation from silicic acid in TPAOH solutions. Physical Chemistry Chemical Physics, 2003, 5, 3518.	1.3	66
176	n-Alkane hydroconversion on Zeogrid and colloidal ZSM-5 assembled from aluminosilicate nanoslabs of MFI framework type. Chemical Communications, 2003, , 1888.	2.2	15
177	Comment on "ldentification of Precursor Species in the Formation of MFI Zeolite in the TPAOHâ^'TEOSâ^'H2O System― Journal of Physical Chemistry B, 2002, 106, 3329-3332.	1.2	127
178	Reply to the Comment on "ldentification of Precursor Species in the Formation of MFI Zeolite in the TPAOHâ^'TEOSâ^'H2O System― Journal of Physical Chemistry B, 2002, 106, 3333-3334.	1.2	40
179	New Evidence for Precursor Species in the Formation of MFI Zeolite in the Tetrapropylammonium Hydroxideâ^ Tetraethyl Orthosilicateâ^ Water System. Journal of Physical Chemistry B, 2002, 106, 4897-4900.	1.2	77
180	Silicalite-1 Zeogrid: A New Silica Molecular Sieve with Super- and Ultra-Micropores. Advanced Functional Materials, 2002, 12, 286.	7.8	42

#	Article	IF	CITATIONS
181	02-O-04 - Colloid chemical properties of silicalite-1 nanoslabs. Studies in Surface Science and Catalysis, 2001, , 141.	1.5	1
182	Zeosil Nanoslabs: Building Blocks innPr4N+-Mediated Synthesis of MFI Zeolite. Angewandte Chemie - International Edition, 2001, 40, 2637-2640.	7.2	172
183	Zeosil Nanoslabs: Building Blocks in nPr(4)N(+)-Mediated Synthesis of MFI Zeolite C.E.A.K., J.A.M., and P.A.J. acknowledge the Belgian Government for sponsoring in the frame of IUAP-PAI program. J.A.M. and P.A.J. acknowledge FWO Vlaanderen for a research grant Angewandte Chemie - International Edition, 2001. 40. 2637-2640.	7.2	2
184	Performance of tetraalkylammonium ions during the formation of zeolites from tetraethylorthosilicate. Studies in Surface Science and Catalysis, 2000, 129, 139-146.	1.5	8
185	Preparation of Zeogrids through interposed stapling and fusion of MFI zeolite type nanoslabs. Studies in Surface Science and Catalysis, 2000, , 185-192.	1.5	5
186	Localization of Residual Water in Alkali-Metal Cation-Exchanged X and Y Type Zeolites. Journal of Physical Chemistry B, 2000, 104, 439-448.	1.2	104
187	Adsorption of pyrrole derivatives in alkali metal cation-exchanged faujasites: comparative studies by surface vibrational techniques, X-ray diffraction and temperature-programmed desorption augmented with theoretical studies Part I. Pyrrole as probe molecule. Physical Chemistry Chemical Physics, 1999, 1. 593-603.	1.3	48
188	Characterization of Nanosized Material Extracted from Clear Suspensions for MFI Zeolite Synthesis. Journal of Physical Chemistry B, 1999, 103, 4960-4964.	1.2	212
189	Mechanism of Transformation of Precursors into Nanoslabs in the Early Stages of MFI and MEL Zeolite Formation from TPAOHâ^'TEOSâ^'H2O and TBAOHâ^'TEOSâ^'H2O Mixtures. Journal of Physical Chemistry B, 1999, 103, 4972-4978.	1.2	175
190	Adsorption of pyrrole derivatives in alkali metal cation-exchanged faujasites: comparative studies by surface vibrational techniques, X-ray diffraction and temperature-programmed desorption augmented with theoretical studies Part II. Methylated pyrrole derivatives as probe molecules. Physical Chemistry Chemical Physics, 1999, 1, 3183-3192.	1.3	10
191	Identification of Precursor Species in the Formation of MFI Zeolite in the TPAOHâ^'TEOSâ^'H2O System. Journal of Physical Chemistry B, 1999, 103, 4965-4971.	1.2	299
192	Aggregation Mechanism of Nanoslabs with Zeolite MFI-Type Structure. Journal of Physical Chemistry B, 1999, 103, 11021-11027.	1.2	158
193	Interaction of Water with Alkali-Metal Cation-Exchanged X Type Zeolites: A Temperature-Programmed Desorption (TPD) and X-ray Diffraction Studyâ€. Langmuir, 1999, 15, 5937-5941.	1.6	40
194	Physicochemical Characterization of Silicalite-1 Nanophase Material. Journal of Physical Chemistry B, 1998, 102, 2633-2639.	1.2	166
195	Aniline and m-dinitrobenzene in NaY — charge transfer complexes absorbed in a zeolitic host. Microporous Materials, 1997, 8, 19-28.	1.6	40
196	m-Dinitrobenzene in zeolite NaY: Four different arrangements. Zeolites, 1996, 17, 381-388.	0.9	54
197	Localization of Pt2+ in NaX. Studies in Surface Science and Catalysis, 1995, , 56-57.	1.5	0
198	Incorporation of methylene blue in NaY zeolite at crystallographically defined positions. Advanced Materials, 1995, 7, 61-64.	11.1	47

#	Article	IF	CITATIONS
199	Location and photostability of faujasite-incorporated methylene blue. Studies in Surface Science and Catalysis, 1994, , 821-827.	1.5	14
200	Dynamics of xylene molecules in zeolite NaY. Microporous Materials, 1994, 2, 261-267.	1.6	7
201	Adsorption and Diffusion of Aromatic Hydrocarbons in Zeolite Y by Molecular Mechanics Calculation and X-ray Powder Diffraction. The Journal of Physical Chemistry, 1994, 98, 12345-12360.	2.9	88
202	Synthesis, Location, and Photoinduced Transformation of Zeolite-Encaged Thioindigo. Langmuir, 1994, 10, 1517-1523.	1.6	43
203	Polar arenes in faujasites. Studies in Surface Science and Catalysis, 1994, 84, 843-850.	1.5	33
204	Optimized design of quartz disc viscosity sensors for the application in harsh chemical environments. , 0, , .		5