Mo-zhen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8333871/publications.pdf

Version: 2024-02-01

186209 223716 2,610 114 28 46 citations h-index g-index papers 114 114 114 3763 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Study on the morphological regulation mechanism of hollow silica microsphere prepared via emulsion droplet template. Chinese Chemical Letters, 2023, 34, 107499.	4.8	2
2	Flexible, high sensitive and radiation-resistant pressure-sensing hydrogel. Chinese Chemical Letters, 2022, 33, 1011-1016.	4.8	11
3	Preparation and performance of magnetic phase change microcapsules with organic-inorganic double shell. Solar Energy Materials and Solar Cells, 2022, 240, 111716.	3.0	30
4	Preparation and adsorption property of novel inverse-opal hierarchical porous N-doped carbon microspheres. Chinese Chemical Letters, 2021, 32, 866-869.	4.8	7
5	Carbon-doped boron nitride nanosheets with adjustable band structure for efficient photocatalytic U(VI) reduction under visible light. Chemical Engineering Journal, 2021, 410, 128280.	6.6	46
6	Integrated Evaporator for Efficient Solar-Driven Interfacial Steam Generation. Nano Letters, 2020, 20, 6051-6058.	4.5	121
7	In-situ fabrication of porous-silica-microsphere-supported platinum nanocluster catalyst by \hat{I}^3 -ray radiation. Applied Surface Science, 2020, 531, 147333.	3.1	7
8	Biodegradable nano-organosilica gene carrier for high-efficiency gene transfection. Journal of Materials Chemistry B, 2020, 8, 2483-2494.	2.9	8
9	Ni-nanoparticle-bound boron nitride nanosheets prepared by a radiation-induced reduction-exfoliation method and their catalytic performance. Journal of Materials Chemistry A, 2020, 8, 9109-9120.	5.2	19
10	Visual dual chemodynamic/photothermal therapeutic nanoplatform based on superoxide dismutase plus Prussian blue. Nano Research, 2019, 12, 1071-1082.	5.8	40
11	Fabrication of inverse-opal lysozyme-imprinted polydopamine/polypyrrole microspheres with near-infrared-light-controlled release property. Journal of Colloid and Interface Science, 2019, 548, 37-47.	5.0	11
12	Synthesis and photocatalytic performance of recyclable core-shell mesoporous Fe3O4@Bi2WO6 nanoparticles. Materials Research Bulletin, 2019, 113, 223-230.	2.7	21
13	Construction of polyporous polymer microspheres with a tailored mesoporous wall. Polymer Chemistry, 2019, 10, 1508-1518.	1.9	5
14	Space-Confined Seeded Growth of Black Silver Nanostructures for Solar Steam Generation. Nano Letters, 2019, 19, 400-407.	4.5	181
15	Radiation Emulsion Polymerization. , 2019, , 183-205.		5
16	Radiation Preparation or Application of Graphene, Nanomaterials, Porous Polymeric Materials, and Ionic Liquids., 2019,, 249-317.		0
17	Cagelike porous sulfonated polystyrene@polyaniline composite microspheres for high-performance supercapacitor. Journal of Materials Science, 2018, 53, 9160-9169.	1.7	2
18	Formation mechanism of 3D macroporous graphene aerogel in alcohol-water media under gamma-ray radiation. Applied Surface Science, 2018, 427, 1144-1151.	3.1	17

#	Article	IF	CITATIONS
19	Self-assembly of graphene oxide nanosheets in t-butanol/water medium under gamma-ray radiation. Chinese Chemical Letters, 2018, 29, 931-934.	4.8	12
20	Gamma ray radiation effect on Bi2WO6 photocatalyst. Chinese Journal of Chemical Physics, 2018, 31, 701-706.	0.6	7
21	Preparation of multi-hollow polystyrene microspheres by radiation-induced frozen emulsion polymerization. Scientia Sinica Chimica, 2018, 48, 1123-1130.	0.2	0
22	Polyaniline nanotubes prepared by one-step synergistic polymerization of aniline and acrylic acid. Chinese Journal of Chemical Physics, 2018, 31, 827-832.	0.6	1
23	In situ synthesis and self-reinforcement of polymeric composite hydrogel based on particulate macro-RAFT agents. RSC Advances, 2017, 7, 1513-1519.	1.7	13
24	One-step synthesis of self-healable hydrogels by the spontaneous phase separation of linear multi-block copolymers during the emulsion copolymerization. Chinese Chemical Letters, 2017, 28, 868-874.	4.8	4
25	Monodisperse Polypyrrole Nanoparticles Prepared via \hat{I}^3 -Ray Radiolysis of Water: An Efficient Near-Infrared Photothermal Agent for Cancer Therapy. Particle and Particle Systems Characterization, 2017, 34, 1600430.	1.2	12
26	Catalase-imprinted Fe3O4/Fe@fibrous SiO2/polydopamine nanoparticles: An integrated nanoplatform of magnetic targeting, magnetic resonance imaging, and dual-mode cancer therapy. Nano Research, 2017, 10, 2351-2363.	5.8	43
27	Chitosan modified by \hat{I}^3 -ray-induced grafting of poly(tributyl-(4-vinylbenzyl)phosphonium) as a biosafe and high-efficiency gene carrier. New Journal of Chemistry, 2017, 41, 4182-4189.	1.4	6
28	Fibrous N-doped hierarchical porous carbon microspheres: Synthesis and adsorption performance. Chemical Engineering Journal, 2017, 323, 224-232.	6.6	34
29	The Molecular Imprinted Nanotrapper for Catalase: A Chemicalâ€Free Inhibition Way to Trigger Tumor Cells Apoptosis. Particle and Particle Systems Characterization, 2017, 34, 1600260.	1.2	3
30	\hat{I}^3 -Ray-Radiation-Scissioned Chitosan as a Gene Carrier and Its Improvedin vitroGene Transfection Performance. Chinese Journal of Chemical Physics, 2017, 30, 231-238.	0.6	4
31	Emerging Multifunctional NIR Photothermal Therapy Systems Based on Polypyrrole Nanoparticles. Polymers, 2016, 8, 373.	2.0	46
32	<i>In-situ</i> Enhanced Toughening of Poly(ethylene terephthalate)/elastomer Blends via Gamma-Ray Radiation at Presence of Trimethylolpropane Triacrylate. Chinese Journal of Chemical Physics, 2016, 29, 703-709.	0.6	1
33	Macroporous Polytetrafluoroethylene Film with a Reusable Matrix and Its Application as the Microreactors. Macromolecular Materials and Engineering, 2016, 301, 674-681.	1.7	1
34	Highly crosslinked poly(ethyleneglycol dimethacrylate)-based microspheres via solvothermal precipitation polymerization in alcohol–water system. Polymer, 2016, 83, 214-222.	1.8	8
35	Hierarchical porous SnO 2 /reduced graphene oxide composites for high-performance lithium-ion battery anodes. Electrochimica Acta, 2016, 215, 42-49.	2.6	19
36	Effect of \hat{I}^3 -Ray-Radiation-Modified Graphene Oxide on the Integrated Mechanical Properties of PET Blends. Industrial & Engineering Chemistry Research, 2016, 55, 8123-8132.	1.8	7

#	Article	IF	CITATIONS
37	One-pot synthesis of porous Au-nanoparticles@polymer/reduced graphene oxide composite microspheres by \hat{I}^3 -ray radiation and their application as a recyclable high-performance catalyst. RSC Advances, 2016, 6, 59684-59691.	1.7	11
38	One-step synthesis of poly(ethyleneglycol dimethacrylate)-microspheres-supported nano-Au catalyst in methanol–water solution under l³-ray radiation. RSC Advances, 2016, 6, 55878-55883.	1.7	11
39	Inductive effect of poly(vinyl pyrrolidone) on morphology and photocatalytic performance of Bi 2 WO 6. Applied Surface Science, 2016, 368, 332-340.	3.1	35
40	Synthesis and morphology control of raspberry-like poly(ethylene terephthalate)/polyacrylonitrile microspheres. Chinese Chemical Letters, 2016, 27, 195-199.	4.8	2
41	Fabrication of macroporous polystyrene/graphene oxide composite monolith and its adsorption property for tetracycline. Chinese Chemical Letters, 2016, 27, 511-517.	4.8	33
42	Chitosan-based core–shell structured particles for in vivo sustainable gene transfection. Journal of Materials Chemistry B, 2016, 4, 893-901.	2.9	9
43	Antimicrobial Expanded Polytetrafluoroethylene Film Prepared by \hat{I}^3 -ray Radiation Induced Grafting of Poly(acrylic acid). Chinese Journal of Chemical Physics, 2015, 28, 107-112.	0.6	2
44	Fabrication of fibrous amidoxime-functionalized mesoporous silica microsphere and its selectively adsorption property for Pb2+ in aqueous solution. Journal of Hazardous Materials, 2015, 297, 66-73.	6.5	96
45	The preparation, drug loading and in vitro NIR photothermal-controlled release behavior of raspberry-like hollow polypyrrole microspheres. Journal of Materials Chemistry B, 2015, 3, 9186-9193.	2.9	25
46	Fabrication of High-Performance Magnetic Lysozyme-Imprinted Microsphere and Its NIR-Responsive Controlled Release Property. ACS Applied Materials & Enterfaces, 2015, 7, 28606-28615.	4.0	53
47	Effect of Poly(acrylic acid)-Modified Poly(ethylene terephthalate) on Improving the Integrated Mechanical Properties of Poly(ethylene terephthalate)/Elastomer Blend. Industrial & Engineering Chemistry Research, 2015, 54, 4748-4755.	1.8	17
48	pH-Responsive cagelike porous polymer microspheres prepared via consecutive RAFT polymerization induced by \hat{l}^3 -ray radiation. Polymer Chemistry, 2015, 6, 7717-7725.	1.9	7
49	Preparation of three-dimensional inverse opal SnO ₂ /graphene composite microspheres and their enhanced photocatalytic activities. Journal of Materials Chemistry A, 2015, 3, 2991-2998.	5.2	52
50	A new approach of synthesis and morphological control of poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 2 Chemistry, 2015, 106, 261-267.	27 Td (ter 1.4	ephthalate)- 2
51	The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles. International Journal of Nanomedicine, 2014, 9, 4965.	3.3	7
52	Microencapsulation of UV-Curable Self-healing Agent for Smart Anticorrosive Coating. Chinese Journal of Chemical Physics, 2014, 27, 607-615.	0.6	13
53	Determination of Adenosine Triphosphate by a Target Inhibited Catalytic Cycle Based on a Strand Displacement Reaction. Analytical Letters, 2014, 47, 478-491.	1.0	5
54	The unfolding of G-quadruplexes and its adverse effect on DNAâ€"gold nanoparticles-based sensing system. Biosensors and Bioelectronics, 2014, 53, 479-485.	5.3	9

#	Article	IF	CITATIONS
55	A target-triggered strand displacement reaction cycle: The design and application in adenosine triphosphate sensing. Analytical Biochemistry, 2014, 446, 69-75.	1.1	14
56	The fabrication and corrosion resistance of benzotriazole-loaded raspberry-like hollow polymeric microspheres. Surface and Coatings Technology, 2014, 238, 15-26.	2.2	20
57	A new method to cross-link a polyplex for enhancing in vivo stability and transfection efficiency. Biomaterials Science, 2014, 2, 390-398.	2.6	11
58	Structural Identification of Polyacrylonitrile during Thermal Treatment by Selective ¹³ C Labeling and Solid-State ¹³ C NMR Spectroscopy. Macromolecules, 2014, 47, 3901-3908.	2.2	69
59	Fabrication of Superhydrophobic Three-Dimensionally Ordered Macroporous Polytetrafluoroethylene Films and Its Application. Langmuir, 2014, 30, 10804-10808.	1.6	10
60	Surface treatment of poly(ethylene terephthalate) by gamma-ray induced graft copolymerization of methyl acrylate and its toughening effect on poly(ethylene terephthalate)/elastomer blend. Radiation Physics and Chemistry, 2013, 90, 92-97.	1.4	9
61	Synthesis of Anisotropic Polymer/Inorganic Particles via Asymmetric Swelling–Dissolving Process. Langmuir, 2013, 29, 1010-1016.	1.6	9
62	Formation of Cagelike Sulfonated Polystyrene Microspheres via Swelling-Osmosis Process and Loading of CdS Nanoparticles. Langmuir, 2013, 29, 15367-15374.	1.6	28
63	Morphological Control of Multihollow Polymer Latex Particles through a Controlled Phase Separation in the Seeded Emulsion Polymerization. Langmuir, 2013, 29, 14787-14794.	1.6	20
64	Double-functionalized gold nanoparticles with split aptamer for the detection of adenosine triphosphate. Talanta, 2013, 115, 506-511.	2.9	30
65	Synthesis of Golf-ball-like Polystyrene Microspheres from a Pickering Emulsion Stabilized by Amphiphilic Janus Microspheres. Chemistry Letters, 2013, 42, 963-965.	0.7	9
66	Synthesis and Optical Properties of ZnO Nanoparticles in Submicron PS Hollow Reactors. Chinese Journal of Chemical Physics, 2012, 25, 719-724.	0.6	0
67	Preparation of Hollow Silica Microspheres via Poly(N-isopropylacrylamide). Chinese Journal of Chemical Physics, 2012, 25, 120-124.	0.6	1
68	Facile fabrication of flower-like nanocomposite microparticles via seeded miniemulsion polymerization. Polymer Chemistry, 2012, 3, 2011.	1.9	11
69	Fabrication and Morphology of Spongelike Polymer Material Based on Cross-Linked Sulfonated Polystyrene Particles. Langmuir, 2012, 28, 5498-5502.	1.6	2
70	The characterization of latex particles prepared by pulsed electron beam induced emulsion polymerization. Radiation Physics and Chemistry, 2012, 81, 1634-1638.	1.4	1
71	Synthesis and Characterization of βâ€CDâ€Coated Polystyrene Microspheres by γâ€Ray Radiation Emulsion Polymerization. Macromolecular Rapid Communications, 2012, 33, 1945-1951.	2.0	3
72	A novel approach for preparation of "cage-like―multihollow polymer microspheres through sulfonated polystyrene particles. Colloid and Polymer Science, 2012, 290, 1749-1757.	1.0	13

#	Article	IF	Citations
73	Fabrication of raspberry SiO2/polystyrene particles and superhydrophobic particulate film with high adhesive force. Journal of Materials Chemistry, 2012, 22, 5784.	6.7	86
74	Synthesis of triangle hybrid particles by radiation-induced seeded emulsion polymerization based on polystyrene/SiO2 core–shell particles. Materials Letters, 2012, 79, 61-64.	1.3	4
75	Colloidal silver deposition onto functionalized polystyrene microspheres. Polymer Chemistry, 2011, 2, 970.	1.9	18
76	Surface modification of poly(ethylene terephthalate) (PET) film by gamma-ray induced grafting of poly(acrylic acid) and its application in antibacterial hybrid film. Radiation Physics and Chemistry, 2011, 80, 567-572.	1.4	63
77	Oneâ€Pot Synthesis of Colloidal Nanobowls and Hybrid Multipodâ€like Nanoparticles by Radiation Miniemulsion Polymerization. Macromolecular Rapid Communications, 2011, 32, 1615-1619.	2.0	11
78	Facile fabrication of free-standing colloidal-crystal films by interfacial self-assembly. Journal of Colloid and Interface Science, 2011, 353, 16-21.	5.0	24
79	Radiation induced graft copolymerization of n-butyl acrylate onto poly(ethylene terephthalate) (PET) films and thermal properties of the obtained graft copolymer. Radiation Physics and Chemistry, 2011, 80, 632-637.	1.4	17
80	The study on grafting comonomer of n-butyl acrylate and styrene onto poly(ethylene terephthalate) film by gamma-ray induced graft copolymerization. Radiation Physics and Chemistry, 2010, 79, 941-946.	1.4	11
81	Preparation and characterization of polymer/silica nanocomposites via double <i>in situ</i> miniemulsion polymerization. Journal of Polymer Science Part A, 2010, 48, 3128-3134.	2.5	30
82	Novel Walnut-like Multihollow Polymer Particles: Synthesis and Morphology Control. Langmuir, 2010, 26, 1635-1641.	1.6	31
83	Hybrid hollow microspheres templated from double Pickering emulsions. Chemical Communications, 2010, 46, 4318.	2.2	37
84	Effects of concentration of nonionic surfactant and molecular weight of polymers on the morphology of anisotropic polystyrene/poly(methyl methacrylate) composite particles prepared by solvent evaporation method. Colloid and Polymer Science, 2009, 287, 819-827.	1.0	17
85	Polymer/metal interpenetrating phase composites prepared via \hat{I}^3 -ray initiated in-situ emulsion polymerization. Polymer Composites, 2009, 30, 1258-1264.	2.3	2
86	Graft copolymers of polyurethane with various vinyl monomers via radiation-induced miniemulsion polymerization: Influential factors to grafting efficiency and particle morphology. Radiation Physics and Chemistry, 2009, 78, 112-118.	1.4	29
87	The Mechanism of the Formation of Multihollow Polymer Spheres through Sulfonated Polystyrene Particles. Langmuir, 2009, 25, 2729-2735.	1.6	38
88	The morphological control of anisotropic polystyrene/silica hybrid particles prepared by radiation miniemulsion polymerization. Chemical Communications, 2009, , 2765.	2.2	30
89	One-step fabrication of multihollow polystyrene particles from miniemulsion system with nonionic surfactant. Polymer, 2008, 49, 4974-4980.	1.8	14
90	Uniform chitosan hollow microspheres prepared with the sulfonated polystyrene particles templates. Colloid and Polymer Science, 2008, 286, 819-825.	1.0	26

#	Article	IF	Citations
91	Radiation miniemulsion polymerization system with HTPB or its derivative as the costabilizer. Colloid and Polymer Science, 2008, 286, 1039-1047.	1.0	2
92	Incorporation of disodium alkyl polyoxyethylene ether sulfosuccinate inside styrene droplets: Mechanism and its application for preparation of multihollow polymer spheres. Journal of Colloid and Interface Science, 2008, 322, 231-236.	5.0	7
93	Preparation, characterization and aggregation behavior of amphiphilic chitosan derivative having poly (I-lactic acid) side chains. Carbohydrate Polymers, 2008, 72, 60-66.	5.1	56
94	Preparation of polystyrene-encapsulated silver hollow spheres via self-assembly of latex particles at the emulsion droplet interface. Materials Letters, 2008, 62, 429-431.	1.3	11
95	Preparation of Monodisperse Polystyrene Particles from Emulsifier-free Miniemulsion Polymerization. Chemistry Letters, 2008, 37, 1158-1159.	0.7	5
96	Morphology and mechanical property of binary and ternary polypropylene nanocomposites with nanoclay and CaCo ₃ particles. Journal of Applied Polymer Science, 2007, 106, 3409-3416.	1.3	66
97	The mechanism of 60Co \hat{l}^3 -ray radiation induced interfacial redox reaction in inverse emulsion and its application in the synthesis of polymer microcapsules. Polymer, 2007, 48, 150-157.	1.8	25
98	Cagelike polymer microspheres with hollow core/porous shell structures. Journal of Polymer Science Part A, 2007, 45, 933-941.	2.5	32
99	Grafting of polymers from clay nanoparticles via high-dose gamma-ray irradiation. Materials Letters, 2007, 61, 3723-3727.	1.3	13
100	Direct preparation of silica hollow spheres in a water in oil emulsion system: The effect of pH and viscosity. Journal of Non-Crystalline Solids, 2006, 352, 2230-2235.	1.5	39
101	Preparation and properties of the self-crosslinked acrylic rubber via gamma ray initiated emulsion polymerization. Polymer Engineering and Science, 2006, 46, 1748-1753.	1.5	4
102	Anionic/nonionic mixed surfactants templates preparation of hollow polymer spheres via emulsion polymerization. Journal of Polymer Science Part A, 2006, 44, 2533-2541.	2.5	25
103	The preparation of composite microsphere with hollow core/porous shell structure by self-assembling of latex particles at emulsion droplet interface. Journal of Colloid and Interface Science, 2006, 299, 791-796.	5.0	27
104	Preparation of core (PBA/layered silicate)–shell (PS) structured complex via γ-ray radiation seeded emulsion polymerization. Materials Letters, 2006, 60, 2544-2548.	1.3	23
105	Effect of carboxyl on vulcanization and mechanical properties of carboxylated acrylic rubber prepared by60Co-γ-ray-induced polymerization. Journal of Applied Polymer Science, 2006, 102, 5587-5594.	1.3	5
106	Polystyrene/melamine-formaldehyde hollow microsphere composite by self-assembling of latex particles at emulsion droplet interface. Polymer, 2005, 46, 7598-7604.	1.8	44
107	Morphology control of hollow polymer latex particle preparation. Journal of Applied Polymer Science, 2005, 98, 860-863.	1.3	12
108	Synthesis of Cagelike Polymer Microspheres with Hollow Core/Porous Shell Structures by Self-Assembly of Latex Particles at the Emulsion Droplet Interface. Chemistry of Materials, 2005, 17, 5891-5892.	3.2	125

#	Article	IF	CITATION
109	Novel One-Step Route for Synthesizing CdS/Polystyrene Nanocomposite Hollow Spheres. Langmuir, 2004, 20, 5192-5195.	1.6	138
110	Formation of monodisperse poly(methyl methacrylate) particles by radiation-induced dispersion polymerization. II. Particle size and size distribution. Colloid and Polymer Science, 2002, 280, 1091-1096.	1.0	11
111	The Comparison of the Ringed Spherulite Morphology of PCL Blends with Poly(vinyl chloride), Poly(bisphenol A carbonate) and Poly(hydroxyether of bisphenol A). Macromolecular Chemistry and Physics, 2001, 202, 961-966.	1.1	20
112	Crystallization and melting behavior of the soft and hard segments in poly(ester-ether)s. I. Ethylene oxide-ethylene terephthalate segmented copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2918-2927.	2.4	7
113	Crystallization and melting behavior of the soft and hard segments in poly(ester-ether)s. II. Ethylene oxide-butylene terephthalate segmented copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2928-2940.	2.4	6
114	Compositional heterogeneity, thermostable, and shape memory properties of ethylene oxide-ethylene terephthalate segmented copolymer with long soft segment. Journal of Applied Polymer Science, 1998, 69, 947-955.	1.3	16