
Francesco Dazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8333425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 2003, 101, 3722-3729.	0.6	1,483
2	Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 2005, 105, 2821-2827.	0.6	1,026
3	Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Science Translational Medicine, 2017, 9, .	5.8	512
4	Mesenchymal Stem Cells Inhibit Dendritic Cell Differentiation and Function by Preventing Entry Into the Cell Cycle. Transplantation, 2007, 83, 71-76.	0.5	404
5	International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 2016, 18, 151-159.	0.3	400
6	The Risk of Recurrent Venous Thromboembolism in Patients with an Arg506→Gln Mutation in the Gene for Factor V (Factor V Leiden). New England Journal of Medicine, 1997, 336, 399-403.	13.9	385
7	Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia, 2007, 21, 304-310.	3.3	366
8	The role of mesenchymal stem cells in haemopoiesis. Blood Reviews, 2006, 20, 161-171.	2.8	304
9	Mesenchymal stem cells: the fibroblasts' new clothes?. Haematologica, 2009, 94, 258-263.	1.7	303
10	European LeukemiaNet criteria for failure or suboptimal response reliably identify patients with CML in early chronic phase treated with imatinib whose eventual outcome is poor. Blood, 2008, 112, 4437-4444.	0.6	293
11	Characterization and Clinical Application of Human CD34+Stem/Progenitor Cell Populations Mobilized into the Blood by Granulocyte Colony-Stimulating Factor. Stem Cells, 2006, 24, 1822-1830.	1.4	267
12	Prophylaxis and treatment of GVHD: EBMT–ELN working group recommendations for a standardized practice. Bone Marrow Transplantation, 2014, 49, 168-173.	1.3	252
13	Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood, 2013, 122, 749-758.	0.6	249
14	Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood, 2000, 96, 2712-2716.	0.6	243
15	The Antiproliferative Effect of Mesenchymal Stem Cells Is a Fundamental Property Shared by All Stromal Cells. Journal of Immunology, 2007, 179, 2824-2831.	0.4	231
16	HB-ECF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation. Blood, 2005, 106, 59-66.	0.6	210
17	Donor lymphocyte infusion for relapsed chronic myelogenous leukemia: prognostic relevance of the initial cell dose. Blood, 2002, 100, 397-405.	0.6	186
18	Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease. Leukemia, 2007, 21, 1992-1999.	3.3	167

#	Article	IF	CITATIONS
19	The Immunosuppressive Properties of Mesenchymal Stem Cells. Transplantation, 2009, 87, S45-S49.	0.5	165
20	The immunomodulatory properties of mesenchymal stem cells. Seminars in Immunopathology, 2011, 33, 593-602.	2.8	158
21	The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cellular Immunology, 2008, 251, 131-136.	1.4	156
22	Early detection of BCR-ABL transcripts by quantitative reverse transcriptase–polymerase chain reaction predicts outcome after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood, 2001, 97, 1560-1565.	0.6	154
23	Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Research and Therapy, 2007, 9, 301.	1.6	150
24	Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood, 2008, 112, 532-541.	0.6	149
25	Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica, 2010, 95, 1081-1089.	1.7	145
26	Graft invariant natural killer T-cell dose predicts risk of acute graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Blood, 2012, 119, 5030-5036.	0.6	129
27	Challenges for mesenchymal stromal cell therapies. Science Translational Medicine, 2019, 11, .	5.8	126
28	Hematopoietic stem cell transplantation in its 60s: A platform for cellular therapies. Science Translational Medicine, 2018, 10, .	5.8	125
29	Imatinib inhibits the activation and proliferation of normal T lymphocytes in vitro. Leukemia, 2004, 18, 1332-1339.	3.3	123
30	Serial measurement of BCR-ABL transcripts in the peripheral blood after allogeneic stem cell transplantation for chronic myeloid leukemia: an attempt to define patients who may not require further therapy. Blood, 2006, 107, 4171-4176.	0.6	119
31	Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood, 2011, 117, 1540-1549.	0.6	119
32	Donor lymphocyte infusions for relapse of chronic myeloid leukemia after allogeneic stem cell transplant. Experimental Hematology, 1999, 27, 1477-1486.	0.2	116
33	Multiparity induces priming to male-specific minor histocompatibility antigen, HY, in mice and humans. Blood, 2003, 102, 388-393.	0.6	115
34	Two distinct HLA-A0201–presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood, 2002, 100, 3835-3837.	0.6	113
35	Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood, 2008, 111, 1173-1181.	0.6	113
36	Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance?. Immunology and Cell Biology, 2013, 91, 12-18.	1.0	108

#	Article	IF	CITATIONS
37	Multiparametric Analysis of Circulating Exosomes and Other Small Extracellular Vesicles by Advanced Imaging Flow Cytometry. Frontiers in Immunology, 2018, 9, 1583.	2.2	108
38	Minimally manipulated whole human umbilical cord is a rich source of clinical-grade human mesenchymal stromal cells expanded in human platelet lysate. Cytotherapy, 2011, 13, 786-801.	0.3	104
39	Cytomegalovirus seropositivity adversely influences outcome after T-depleted unrelated donor transplant in patients with chronic myeloid leukaemia: the case for tailored graft-versus-host disease prophylaxis. British Journal of Haematology, 2001, 112, 228-236.	1.2	101
40	Potential of mesenchymal stem cell therapy. Current Opinion in Oncology, 2007, 19, 650-655.	1.1	101
41	Mesenchymal stem cells and autoimmune diseases. Best Practice and Research in Clinical Haematology, 2011, 24, 49-57.	0.7	100
42	Longâ€ŧerm clinical results of autologous infusion of mobilized adult bone marrow derived CD34 ⁺ cells in patients with chronic liver disease. Cell Proliferation, 2008, 41, 115-125.	2.4	95
43	4G/5G Polymorphism of PAI-1 Gene Promoter and Fibrinolytic Capacity in Patients with Deep Vein Thrombosis. Thrombosis and Haemostasis, 1998, 80, 956-960.	1.8	94
44	Monitoring patients in complete cytogenetic remission after treatment of CML in chronic phase with imatinib: patterns of residual leukaemia and prognostic factors for cytogenetic relapse. Leukemia, 2005, 19, 507-512.	3.3	94
45	Dendritic cells from CML patients have altered actin organization, reduced antigen processing, and impaired migration. Blood, 2003, 101, 3560-3567.	0.6	93
46	Bi-directional cell-pericellular matrix interactions direct stem cell fate. Nature Communications, 2018, 9, 4049.	5.8	90
47	The highway code of T cell trafficking. Journal of Pathology, 2008, 214, 179-189.	2.1	88
48	Cell therapy for autoimmune diseases. Arthritis Research and Therapy, 2007, 9, 206.	1.6	80
49	Mesenchymal stem cells for graftâ€ <i>versus</i> â€host disease: Close encounters with T cells. European Journal of Immunology, 2008, 38, 1479-1482.	1.6	80
50	Imatinib mesylate (STI571) in the treatment of relapse of chronic myeloid leukemia after allogeneic stem cell transplantation. Blood, 2002, 99, 3861-3862.	0.6	78
51	Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Scientific Reports, 2017, 7, 43519.	1.6	76
52	Immunomodulatory Properties of Mesenchymal Stromal Cells: An Update. Frontiers in Cell and Developmental Biology, 2021, 9, 637725.	1.8	76
53	The rate and kinetics of molecular response to donor leucocyte transfusions in chronic myeloid leukaemia patients treated for relapse after allogeneic bone marrow transplantation. British Journal of Haematology, 1997, 99, 945-950.	1.2	72
54	Mesenchymal stromal cells: a key player in â€~innate tolerance'?. Immunology, 2012, 137, 206-213.	2.0	71

#	Article	IF	CITATIONS
55	Chronic myeloid leukemia in chronic phase responding to imatinib: the occurrence of additional cytogenetic abnormalities predicts disease progression. Haematologica, 2003, 88, 260-7.	1.7	71
56	Adoptive immunotherapy for relapse of chronic myeloid leukemia after allogeneic bone marrow transplant: equal efficacy of lymphocytes from sibling and matched unrelated donors. Bone Marrow Transplantation, 1998, 21, 1055-1061.	1.3	67
57	Molecular studies in patients with chronic myeloid leukaemia in remission 5 years after allogeneic stem cell transplant define the risk of subsequent relapse. British Journal of Haematology, 2001, 115, 569-574.	1.2	66
58	Efficacy of tyrosine kinase inhibitors (TKIs) as third-line therapy in patients with chronic myeloid leukemia in chronic phase who have failed 2 prior lines of TKI therapy. Blood, 2010, 116, 5497-5500.	0.6	65
59	Examination of HY Response: T Cell Expansion, Immunodominance, and Cross-Priming Revealed by HY Tetramer Analysis. Journal of Immunology, 2001, 167, 3756-3764.	0.4	63
60	Estimating leukemia-free survival after allografting for chronic myeloid leukemia: a new method that takes into account patients who relapse and are restored to complete remission. Blood, 2000, 96, 86-90.	0.6	62
61	Manufacturing Mesenchymal Stromal Cells for the Treatment of Graft-versus-Host Disease: A Survey among Centers Affiliated with the European Society for Blood and Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 2365-2370.	2.0	61
62	Mesenchymal Stromal Cells for Graft Versus Host Disease: Mechanism-Based Biomarkers. Frontiers in Immunology, 2020, 11, 1338.	2.2	60
63	Outcome of patients developing GVHD after DLI given to treat CML relapse: a study by the chronic leukemia working party of the EBMT. Bone Marrow Transplantation, 2010, 45, 558-564.	1.3	56
64	Increased frequencies of CD4+CD25high Tregs correlate with disease relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Leukemia, 2007, 21, 472-479.	3.3	52
65	Phase I/II open-label trial of intravenous allogeneic mesenchymal stromal cell therapy in adults with recessive dystrophic epidermolysis bullosa. Journal of the American Academy of Dermatology, 2020, 83, 447-454.	0.6	50
66	TCRζdimlymphocytes define populations of circulating effector cells that migrate to inflamed tissues. Blood, 2007, 109, 4328-4335.	0.6	47
67	Chronic GVHD as an autoimmune disease. Best Practice and Research in Clinical Haematology, 2008, 21, 281-289.	0.7	47
68	Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. Npj Regenerative Medicine, 2017, 2, 28.	2.5	47
69	ADOPTIVE IMMUNOTHERAPY FOLLOWING ALLOGENEIC BONE MARROW TRANSPLANTATION. Annual Review of Medicine, 1998, 49, 329-340.	5.0	46
70	Response to donor lymphocyte infusions for chronic myeloid leukemia is dose-dependent: the importance of escalating the cell dose to maximize therapeutic efficacy. Leukemia, 2007, 21, 943-948.	3.3	46
71	Combined Inhibition of p97 and the Proteasome Causes Lethal Disruption of the Secretory Apparatus in Multiple Myeloma Cells. PLoS ONE, 2013, 8, e74415.	1.1	45
72	Apoptotic mesenchymal stromal cells induce prostaglandin E2 in monocytes: implications for the monitoring of mesenchymal stromal cell activity. Haematologica, 2019, 104, e438-e441.	1.7	45

#	Article	IF	CITATIONS
73	Donor lymphocyte infusions. Current Opinion in Hematology, 1999, 6, 394.	1.2	45
74	Repurposing Tin Mesoporphyrin as an Immune Checkpoint Inhibitor Shows Therapeutic Efficacy in Preclinical Models of Cancer. Clinical Cancer Research, 2018, 24, 1617-1628.	3.2	44
75	The therapeutic activity of low-dose irradiation on experimental arthritis depends on the induction of endogenous regulatory T cell activity. Annals of the Rheumatic Diseases, 2010, 69, 1519-1526.	0.5	41
76	Mesenchymal-myeloid interaction in the regulation of immunity. Seminars in Immunology, 2018, 35, 59-68.	2.7	39
77	Adjuvant interleukin-2 therapy for patients refractory to donor lymphocyte infusions. Experimental Hematology, 2004, 32, 218-223.	0.2	37
78	Disease relapse after haematopoietic stem cell transplantation: Risk factors and treatment. Best Practice and Research in Clinical Haematology, 2007, 20, 311-327.	0.7	36
79	Donor Lymphocyte Infusions for Patients who Relapse After Allogeneic Stem Cell Transplantation for Chronic Myeloid Leukaemia. Leukemia and Lymphoma, 2003, 44, 23-28.	0.6	35
80	Mesenchymal stem cells for graft-versus-host disease: a double edged sword?. Leukemia, 2008, 22, 463-465.	3.3	35
81	Classification and biology of tumour associated stromal cells. Immunology Letters, 2015, 168, 175-182.	1.1	34
82	Detection of B-Cell Monoclonality in Fine Needle Aspiration by PCR Analysis. Leukemia and Lymphoma, 1998, 29, 179-185.	0.6	33
83	Macrophages orchestrate the expansion of a proangiogenic perivascular niche during cancer progression. Science Advances, 2021, 7, eabg9518.	4.7	32
84	Immune haemolytic anaemia following T cell-depleted allogeneic bone marrow transplantation for chronic myeloid leukaemia: association with leukaemic relapse and treatment with donor lymphocyte infusions. Bone Marrow Transplantation, 2001, 28, 581-586.	1.3	31
85	Mesenchymal stem cells and innate tolerance: biology and clinical applications. Swiss Medical Weekly, 2010, 140, w13121.	0.8	31
86	Persistence of Drug-Resistant Leukemic Stem Cells and Impaired NK Cell Immunity in CML Patients Depend on <i>MIR300</i> Antiproliferative and PP2A-Activating Functions. Blood Cancer Discovery, 2020, 1, 48-67.	2.6	30
87	Mesenchymal stromal cells for acute graftâ€versusâ€host disease: response at 1Âweek predicts probability of survival. British Journal of Haematology, 2019, 185, 89-92.	1.2	28
88	Mesenchymal stem cell therapy for degenerative inflammatory disorders. Current Opinion in Organ Transplantation, 2008, 13, 639-644.	0.8	27
89	Hematopoietic mobilization. Neurology, 2015, 84, 1473-1482.	1.5	27
90	Effects of MSC co-injection on the reconstitution of aplastic anemia patient following hematopoietic stem cell transplantation. Leukemia, 2010, 24, 1791-1795.	3.3	26

#	Article	IF	CITATIONS
91	MSCs: science and trials. Nature Medicine, 2013, 19, 812-813.	15.2	26
92	Immunologic abnormalities in angioimmunoblastic lymphadenopathy. Cancer, 1987, 60, 2412-2418.	2.0	25
93	Factors for graft-versus-host disease after donor lymphocyte infusions with an escalating dose regimen: lack of association with cell dose. British Journal of Haematology, 2007, 136, 833-836.	1.2	25
94	EBMT Risk Score Predicts Outcome of Allogeneic Hematopoietic Stem Cell Transplantation in Patients Who Have Failed a Previous Transplantation Procedure. Biology of Blood and Marrow Transplantation, 2012, 18, 235-240.	2.0	25
95	Bone Marrow Transplantation 1957-2019. Frontiers in Immunology, 2019, 10, 1246.	2.2	21
96	Regulatory T cell therapy for the induction of clinical organ transplantation tolerance. Seminars in Immunology, 2011, 23, 453-461.	2.7	20
97	Advances in mesenchymal stromal cell therapy in the management of Crohn's disease. Expert Review of Gastroenterology and Hepatology, 2018, 12, 141-153.	1.4	20
98	Low-intensity transplant regimens facilitate recruitment of donor-specific regulatory T cells that promote hematopoietic engraftment. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8415-8420.	3.3	19
99	Prevalence of antiâ€FVIII antibodies in severe haemophilia A patients with inversion of intron 22. British Journal of Haematology, 1997, 97, 807-809.	1.2	18
100	Acute myeloid leukaemia niche regulates response to Lâ€asparaginase. British Journal of Haematology, 2019, 186, 420-430.	1.2	18
101	Prognostic factors for acute graft-versus-host disease after donor lymphocyte infusions. Blood, 2002, 100, 2673-2673.	0.6	16
102	Engraftment of Allogeneic Hematopoietic Stem Cells Requires Both Inhibition of Host-Versus-Graft Responses and â€~Space' for Homeostatic Expansion. Transplantation, 2005, 79, 1484-1491.	0.5	16
103	Clinical Perspectives of Mesenchymal Stem Cells. Stem Cells International, 2012, 2012, 1-3.	1.2	16
104	Bone marrow mesenchymal stromal cells induce nitric oxide synthase-dependent differentiation of CD11b + cells that expedite hematopoietic recovery. Haematologica, 2017, 102, 818-825.	1.7	16
105	Complement C3 Exacerbates Imiquimod-Induced Skin Inflammation andÂPsoriasiform Dermatitis. Journal of Investigative Dermatology, 2017, 137, 760-763.	0.3	16
106	T-cell receptor repertoire usage after allografting differs between CD4+CD25+ regulatory T cells and their CD4+CD25 counterpart. Haematologica, 2007, 92, 206-214.	1.7	15
107	The emergence of regenerative medicine in organ transplantation: 1st European Cell Therapy and Organ Regeneration Section meeting. Transplant International, 2020, 33, 833-840.	0.8	15
108	Wharton's jelly mesenchymal stromal/stem cells derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1 ⁺ subpopulation. Regenerative Medicine, 2014, 9, 723-732.	0.8	14

#	Article	IF	CITATIONS
109	Human aplastic anaemiaâ€derived mesenchymal stromal cells form functional haematopoietic stem cell niche <i>in vivo</i> . British Journal of Haematology, 2017, 179, 669-673.	1.2	14
110	Acute myeloid leukemia shapes the bone marrow stromal niche <i>in vivo</i> . Haematologica, 2021, 106, 865-870.	1.7	14
111	Human Mesenchymal Stromal Cells Engineered to Express Collagen VII Can Restore Anchoring Fibrils in Recessive Dystrophic Epidermolysis Bullosa Skin Graft Chimeras. Journal of Investigative Dermatology, 2020, 140, 121-131.e6.	0.3	13
112	Comparison of human isogeneic Wharton's jelly MSCs and iPSC-derived MSCs reveals differentiation-dependent metabolic responses to IFNG stimulation. Cell Death and Disease, 2019, 10, 277.	2.7	12
113	Escalating-dose HLA-mismatched DLI is safe for the treatment of leukaemia relapse following alemtuzumab-based myeloablative allo-SCT. Bone Marrow Transplantation, 2013, 48, 1324-1328.	1.3	11
114	Management of chronic myeloid leukaemia in relapse following donor lymphocyte infusion induced remission: a retrospective study of the clinical trials committee of the British Society of Blood & Marrow Transplantation (BSBMT). Bone Marrow Transplantation, 2005, 36, 1065-1069.	1.3	10
115	Rapid and Efficient Stable Gene Transfer to Mesenchymal Stromal Cells Using a Modified Foamy Virus Vector. Molecular Therapy, 2016, 24, 1227-1236.	3.7	10
116	Immune monitoring in allogeneic hematopoietic stem cell transplant recipients: a survey from the EBMT-CTIWP. Bone Marrow Transplantation, 2018, 53, 1201-1205.	1.3	10
117	Apoptosis in the Pancreatic Cancer Tumor Microenvironment—The Double-Edged Sword of Cancer-Associated Fibroblasts. Cells, 2021, 10, 1653.	1.8	10
118	Haemopoietic stem cell transplantation induces tolerance to donor antigens but not to foreign FVIII peptides. Haemophilia, 2010, 16, 143-147.	1.0	9
119	Enhanced and aberrant <scp>T</scp> cell trafficking following total body irradiation: a gateway to graftâ€versusâ€host disease?. British Journal of Haematology, 2013, 162, 808-818.	1.2	9
120	Minor histocompatibility antigens and stem cell transplantation. Vox Sanguinis, 2004, 87, 11-14.	0.7	8
121	Regulatory T cells in stem cell transplantation: Main characters or walk-on actors?. Critical Reviews in Oncology/Hematology, 2012, 84, 18-25.	2.0	8
122	Donor lymphocyte infusions for the treatment of chronic myeloid leukemia relapse following peripheral blood or bone marrow stem cell transplantation. Bone Marrow Transplantation, 2013, 48, 837-842.	1.3	8
123	Effects of maternal obesity on Wharton's Jelly mesenchymal stromal cells. Scientific Reports, 2017, 7, 17595.	1.6	8
124	Mixed T cell lineage chimerism in acute leukemia/MDS using pre-emptive donor lymphocyte infusion strategy—ls it prognostic?—a single-center retrospective study. Blood Cancer Journal, 2021, 11, 128.	2.8	8
125	CD25-negative hairy cell leukaemia: Intracytoplasmic detection of Tac antigen and interferon-induced surface expression. Journal of Pathology, 1995, 177, 41-47.	2.1	7
126	Prediction of Cytogenetic Response to Second Generation TKI Therapy in CML Chronic Phase Patients Who Have Failed Imatinib Therapy and Early Identification of Factors That Influence Survival. Blood, 2008, 112, 332-332.	0.6	7

#	Article	IF	CITATIONS
127	Pluripotent Stem Cell-Derived Hepatocytes Inhibit T Cell Proliferation In Vitro through Tryptophan Starvation. Cells, 2022, 11, 24.	1.8	6
128	A Role for Platelet-Derived Growth Factor in Drug-Induced Chronic Ergotism?. Angiology, 1995, 46, 633-636.	0.8	5
129	Minor antigen solves major problem. Nature Medicine, 2001, 7, 769-770.	15.2	5
130	Dasatinib may not suppress the GVL effect of donor lymphocyte infusions for CML. Bone Marrow Transplantation, 2010, 45, 395-396.	1.3	5
131	Cancer makes new friends with old tricks. Blood, 2013, 122, 1093-1094.	0.6	5
132	The Kinetics and Extent of Engraftment of Chronic Myelogenous Leukemia Cells in Non-Obese Diabetic/Severe Combined Immunodeficiency Mice Reflect the Phase of the Donor's Disease: An In Vivo Model of Chronic Myelogenous Leukemia Biology. Blood, 1998, 92, 1390-1396.	0.6	5
133	Unique Regulatory Properties of Mesangial Cells Are Genetically Determined in the Rat. PLoS ONE, 2014, 9, e111452.	1.1	4
134	The failure of female cells to present in vitro the male H-Y antigen for secondary cytotoxic T-cell responses. Immunogenetics, 1985, 22, 177-181.	1.2	3
135	Marked but Transitory Elevation of Hepatic Transaminases after Subcutaneous Calcium Heparin Administration. Acta Haematologica, 1994, 92, 54-54.	0.7	2
136	Correction of severe anaemia using immuno-regulated gene therapy is achieved by restoring the early erythroblast compartment. British Journal of Haematology, 2006, 132, 608-614.	1.2	2
137	Mesenchymal stromal cells (MSC) for treating immune-mediated inflammation post-transplantation and in autoimmunity. The Cochrane Library, 2012, , .	1.5	2
138	On minor histocompatibility antigens, mixed chimerism, and transplantation tolerance. American Journal of Transplantation, 2021, 21, 919-920.	2.6	2
139	Estimating leukemia-free survival after allografting for chronic myeloid leukemia: a new method that takes into account patients who relapse and are restored to complete remission. Blood, 2000, 96, 86-90.	0.6	2
140	CD14 positive cells accelerate hematopoietic stem cell engraftment. Bone Marrow Transplantation, 2022, 57, 942-948.	1.3	2
141	Lithium Carbonate Failed to Modify the Neutropenia Associated with Large Granular Lymphocyte Proliferation. Acta Haematologica, 1989, 81, 114-115.	0.7	1
142	Umbilical Cord as a Source of Immunomodulatory Reagents. , 2015, , 125-140.		1
143	Roadmap to clinical translation: insights from a UK regenerative medicine platform workshop on mesenchymal stromal cells. Regenerative Medicine, 2017, 12, 895-897.	0.8	1
144	Is platelet gel safe enough for neutropenic patients?. Transfusion and Apheresis Science, 2019, 58, 190-191.	0.5	1

#	Article	IF	CITATIONS
145	High Frequency and Cell Dose of Invariant NKT Cells In the Graft Are Associated with Lack of Clinically Significant Acute Gvhd In T Cell-Replete Sibling Allografts. Blood, 2010, 116, 2539-2539.	0.6	1
146	Unusual Association of Hairy Cell Leukemia and Monoclonal Large Granular Lymphocyte Proliferation. Leukemia and Lymphoma, 1990, 2, 433-436.	0.6	0
147	Reply to â€~Does post-transplant treatment with imatinib mesylate inhibit graft-versus-leukemia?' by Chunduri et al. Leukemia, 2005, 19, 457-457.	3.3	0
148	127: Mesenchymal Stem Cells Exert Differential Effects on Alloantigen- and Virus-Specific T Cells. Biology of Blood and Marrow Transplantation, 2008, 14, 48-49.	2.0	0
149	Dissection of Effector Pathways in the Host-Versus-Graft Response to Bone Marrow Transplantation. Transplantation, 2008, 86, 1311-1314.	0.5	Ο
150	Immune Tolerance in Hemopoietic Stem Cell Transplantation. , 2016, , 241-247.		0
151	Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood, 2000, 96, 2712-2716.	0.6	Ο
152	Hematopoietic and mesenchymal stem cell transplantation in autoimmune diseases. Future Rheumatology, 2006, 1, 179-188.	0.2	0
153	The Immunoregulatory Role of Mesenchymal Stem Cells. , 2007, , 35-48.		Ο
154	Allogeneic Myeloablative Hematopoietic Stem Cell Transplantation for Chronic Myelogenous Leukemia in the Imatinib Era Blood, 2008, 112, 970-970.	0.6	0
155	Osteoclast Function Is Essential in the Hematopoietic Stem Cell Niche. Blood, 2008, 112, 547-547.	0.6	Ο
156	Response to Tyrosine Kinase Inhibitor Therapy In Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation for Advanced Phase Chronic Myeloid Leukemia. Blood, 2010, 116, 3515-3515.	0.6	0
157	Preconditioning Level of C-Reactive Protein and Disease Stage Are Key Prognostic Factors In Myeloablative Allogeneic Hematopoietic Stem Cell Transplantation Blood, 2010, 116, 3488-3488.	0.6	0
158	The Immunosuppressive Properties of Adult Stem Cells: Mesenchymal Stem Cells as a Case Study. , 2013, , 175-197.		0
159	Can Targeted Therapy for CML Still Learn From Transplant? Using Post-transplant RQ-PCR monitoring to Clarify the Importance of the Depth of Molecular Remission On the Risk of Subsequent Relapse Blood, 2012, 120, 2789-2789.	0.6	Ο
160	Mesenchymal stem cells enhance bacterial clearance of streptococcal <i>pneumonia</i> e and pseudomonas <i>aeruginosa</i> in the lung. , 2016, , .		0
161	How to Monitor Immune Reconstitution Following Allogeneic Hematopoietic Stem Cell Transplantation: A Survey from the EBMT- Cellular Therapy & Immunobiology Working Party. Blood, 2016, 128, 4581-4581.	0.6	0
162	Manufacturing of Mesenchymal Stromal Cells for the Treatment of Graft-Versus-Host Disease: A Survey within the European Society of Blood and Marrow Transplantation. Blood, 2016, 128, 3374-3374.	0.6	0

#	Article	IF	CITATIONS
163	Repurposing tin mesoporphyrin as a novel immune checkpoint therapy in the treatment of cancer: A preclinical evaluation Journal of Clinical Oncology, 2018, 36, e15129-e15129.	0.8	0
164	Abstract 1134: The tumor suppressor activity of miR-300 is detrimental for leukemia development but required for leukemia stem cell maintenance. , 2018, , .		0
165	Mechanisms of Immune Resistance. , 2019, , 457-460.		0
166	Differential Alemtuzumab Dosage Effects in T-Cell Deplete Allogeneic Haematopoietic Stem Cell Transplants for Myeloid Malignancies- King's College Hospital London Experience. Blood, 2019, 134, 4622-4622.	0.6	0
167	Immunoregulation in the Hematopoietic Stem Cell Niche. , 2020, , 69-77.		0
168	Molecular Basis of Transplantation. , 0, , 380-389.		0
169	Assessing the immunosuppressive activity of alginate-encapsulated mesenchymal stromal cells on splenocytes. Artificial Cells, Nanomedicine and Biotechnology, 2022, 50, 168-176.	1.9	0