Michael Köttgen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8333088/publications.pdf Version: 2024-02-01

MICHAEL KÃOTTOEN

#	Article	IF	CITATIONS
1	Single Gene Mutations in Pkd1 or Tsc2 Alter Extracellular Vesicle Production and Trafficking. Biology, 2022, 11, 709.	2.8	3
2	Loss of PKD1/polycystin-1 impairs lysosomal activity in a CAPN (calpain)-dependent manner. Autophagy, 2021, 17, 2384-2400.	9.1	22
3	A novel mouse model of hyperuricemia expressing a human functional ABCG2 variant. Kidney International, 2021, 99, 12-14.	5.2	4
4	Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflugers Archiv European Journal of Physiology, 2021, 473, 1-2.	2.8	29
5	Identification of pathological transcription in autosomal dominant polycystic kidney disease epithelia. Scientific Reports, 2021, 11, 15139.	3.3	1
6	Eomes cannot replace its paralog T-bet during expansion and differentiation of CD8 effector T cells. PLoS Pathogens, 2020, 16, e1008870.	4.7	7
7	Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans. Nature Genetics, 2020, 52, 167-176.	21.4	101
8	Mass Spectrometry-Based Analysis of TRPP2 Phosphorylation. Methods in Molecular Biology, 2019, 1987, 51-64.	0.9	2
9	Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nature Cell Biology, 2019, 21, 1518-1531.	10.3	81
10	HIF-1α drives cyst growth in advanced stages of autosomal dominant polycystic kidneyÂdisease. Kidney International, 2018, 94, 849-851.	5.2	6
11	The mitochondrial transporter SLC25A25 links ciliary TRPP2 signaling and cellular metabolism. PLoS Biology, 2018, 16, e2005651.	5.6	18
12	Ciliaâ€localized <scp>LKB</scp> 1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. EMBO Journal, 2018, 37, .	7.8	78
13	Efficient genome editing of differentiated renal epithelial cells. Pflugers Archiv European Journal of Physiology, 2017, 469, 303-311.	2.8	17
14	TRPP2 ion channels: Critical regulators of organ morphogenesis in health and disease. Cell Calcium, 2017, 66, 25-32.	2.4	26
15	Targeted rescue of a polycystic kidney disease mutation by lysosomal inhibition. Kidney International, 2016, 89, 949-955.	5.2	18
16	Cilia and mechanosensation revisited. Nature Reviews Nephrology, 2016, 12, 318-319.	9.6	9
17	The TRPP Subfamily and Polycystin-1 Proteins. Handbook of Experimental Pharmacology, 2014, 222, 675-711.	1.8	39
18	N-Glycosylation Determines the Abundance of the Transient Receptor Potential Channel TRPP2. Journal of Biological Chemistry, 2014, 289, 14854-14867.	3.4	39

Michael Köttgen

#	Article	IF	CITATIONS
19	Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5223-5228.	7.1	93
20	Induced Pluripotent Stem Cells from Polycystic Kidney Disease Patients: A Novel Tool to Model the Pathogenesis of Cystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2013, 24, 1507-1509.	6.1	4
21	TRPP Channels and Polycystins. Advances in Experimental Medicine and Biology, 2011, 704, 287-313.	1.6	33
22	ABCG transporters and disease. FEBS Journal, 2011, 278, 3215-3225.	4.7	59
23	Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Human Molecular Genetics, 2011, 20, 4056-4068.	2.9	101
24	Drosophila Sperm Swim Backwards in the Female Reproductive Tract and Are Activated via TRPP2 Ion Channels. PLoS ONE, 2011, 6, e20031.	2.5	62
25	Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nature Cell Biology, 2010, 12, 1115-1122.	10.3	330
26	TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum. EMBO Journal, 2009, 28, 490-499.	7.8	98
27	Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10338-10342.	7.1	562
28	TRPP2 and TRPV4 form a polymodal sensory channel complex. Journal of Cell Biology, 2008, 182, 437-447.	5.2	349
29	TRPP2 and TRPV4 form a polymodal sensory channel complex. Journal of General Physiology, 2008, 132, i2-i2.	1.9	2
30	OS-9 Regulates the Transit and Polyubiquitination of TRPV4 in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2007, 282, 36561-36570.	3.4	63
31	TRPP2 and autosomal dominant polycystic kidney disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 836-850.	3.8	65
32	A Taste Receptor Required for the Caffeine Response In Vivo. Current Biology, 2006, 16, 1812-1817.	3.9	228
33	Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO Journal, 2005, 24, 705-716.	7.8	237
34	Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia. EMBO Journal, 2005, 24, 4415-4424.	7.8	92
35	Subcellular localization and trafficking of polycystins. Pflugers Archiv European Journal of Physiology, 2005, 451, 286-293.	2.8	61
36	An inwardly rectifying whole cell current induced by Gq-coupled receptors. Biochemical and Biophysical Research Communications, 2004, 322, 177-185.	2.1	3

Michael Köttgen

#	Article	IF	CITATIONS
37	P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport. Journal of Clinical Investigation, 2003, 111, 371-379.	8.2	38
38	P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport. Journal of Clinical Investigation, 2003, 111, 371-379.	8.2	69
39	Interaction of 14-3-3 Protein with Regulator of G Protein Signaling 7 Is Dynamically Regulated by Tumor Necrosis Factor-α. Journal of Biological Chemistry, 2002, 277, 32954-32962.	3.4	51
40	Characterisation of the Rat SK4/IK1 K ⁺ Channel. Cellular Physiology and Biochemistry, 2001, 11, 219-230.	1.6	43
41	Interaction with Podocin Facilitates Nephrin Signaling. Journal of Biological Chemistry, 2001, 276, 41543-41546.	3.4	304
42	Acetylcholine Increases the Free Intracellular Calcium Concentration in Podocytes in Intact Rat Glomeruli via Muscarinic M5 Receptors. Journal of the American Society of Nephrology: JASN, 2001, 12, 678-687.	6.1	18