Yu Lin Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/833298/publications.pdf

Version: 2024-02-01

77	5,759	36	73
papers	citations	h-index	g-index
81	81	81	9814
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrothermal Dehydration for the "Green―Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chemistry of Materials, 2009, 21, 2950-2956.	3.2	1,430
2	Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Applied Physics Letters, 2009, 95, .	1.5	394
3	Scalable production of graphene via wet chemistry: progress and challenges. Materials Today, 2015, 18, 73-78.	8.3	265
4	Electrochemical exfoliation of graphite and production of functional graphene. Current Opinion in Colloid and Interface Science, 2015, 20, 329-338.	3.4	262
5	Ultrathin Nitrogenâ€Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media. Angewandte Chemie - International Edition, 2018, 57, 16511-16515.	7.2	261
6	Synthesis and Transfer of Large-Area Monolayer WS ₂ Crystals: Moving Toward the Recyclable Use of Sapphire Substrates. ACS Nano, 2015, 9, 6178-6187.	7.3	200
7	Enhanced Electrochemical Expansion of Graphite for <i>in Situ</i> Electrochemical Functionalization. Journal of the American Chemical Society, 2012, 134, 17896-17899.	6.6	163
8	Encapsulation of Plasmid DNA by Nanoscale Metal–Organic Frameworks for Efficient Gene Transportation and Expression. Advanced Materials, 2019, 31, e1901570.	11.1	130
9	Recent Progress of Direct Ink Writing of Electronic Components for Advanced Wearable Devices. ACS Applied Electronic Materials, 2019, 1, 1718-1734.	2.0	108
10	Single-Atom Electrocatalysts for Lithium Sulfur Batteries: Progress, Opportunities, and Challenges. , 2020, 2, 1450-1463.		108
11	A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of wearable micron-scale tactile sensors. Applied Materials Today, 2019, 16, 482-492.	2.3	106
12	One-step solid phase synthesis of a highly efficient and robust cobalt pentlandite electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 18314-18321.	5.2	97
13	Mechanically-Assisted Electrochemical Production of Graphene Oxide. Chemistry of Materials, 2016, 28, 8429-8438.	3.2	91
14	Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution. Nano Research, 2018, 11, 3959-3971.	5.8	88
15	Low-temperature processed In2S3 electron transport layer for efficient hybrid perovskite solar cells. Nano Energy, 2017, 36, 102-109.	8.2	87
16	Highly Dispersed Ru Nanoparticles on Boronâ€Doped Ti ₃ C ₂ T <i>_x</i> (MXene) Nanosheets for Synergistic Enhancement of Electrocatalytic Hydrogen Evolution. Small, 2021, 17, e2102218.	5.2	83
17	Recent Advances in Perovskiteâ€Based Buildingâ€Integrated Photovoltaics. Advanced Materials, 2020, 32, e2000631.	11.1	80
18	Magnetic Electrodeposition of the Hierarchical Cobalt Oxide Nanostructure from Spent Lithium-Ion Batteries: Its Application as a Supercapacitor Electrode. Journal of Physical Chemistry C, 2018, 122, 12200-12206.	1.5	77

#	Article	IF	CITATIONS
19	Wavelength-tunable waveguides based on polycrystalline organic–inorganic perovskite microwires. Nanoscale, 2016, 8, 6258-6264.	2.8	76
20	W18O49 nanowires-graphene nanocomposite for asymmetric supercapacitors employing AlCl3 aqueous electrolyte. Chemical Engineering Journal, 2021, 409, 128216.	6.6	72
21	Electrostatically Self-Assembled Polyoxometalates on Molecular-Dye-Functionalized Diamond. Journal of the American Chemical Society, 2009, 131, 18293-18298.	6.6	64
22	Porous MnO/Mn3O4 nanocomposites for electrochemical energy storage. Nano Energy, 2015, 13, 702-708.	8.2	62
23	Doping Strategies in Sb ₂ S ₃ Thin Films for Solar Cells. Small, 2021, 17, e2100241.	5.2	62
24	Cell Adhesion Properties on Photochemically Functionalized Diamond. Langmuir, 2007, 23, 5615-5621.	1.6	61
25	Facile electrochemical approach for the production of graphite oxide with tunable chemistry. Carbon, 2017, 112, 185-191.	5.4	59
26	Suzuki Coupling of Aryl Organics on Diamond. Chemistry of Materials, 2008, 20, 3137-3144.	3.2	55
27	Bifunctional FePt Coreâ^Shell and Hollow Spheres:Â Sonochemical Preparation and Self-Assembly. Chemistry of Materials, 2007, 19, 2566-2572.	3.2	53
28	Defect Engineering in Titanium-Based Oxides for Electrochemical Energy Storage Devices. Electrochemical Energy Reviews, 2020, 3, 286-343.	13.1	52
29	Solvothermal Growth of Bismuth Chalcogenide Nanoplatelets by the Oriented Attachment Mechanism: An in Situ PXRD Study. Chemistry of Materials, 2015, 27, 3471-3482.	3.2	51
30	Ultrathin Nitrogenâ€Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media. Angewandte Chemie, 2018, 130, 16749-16753.	1.6	49
31	Fluorescent Nanogel of Arsenic Sulfide Nanoclusters. Angewandte Chemie - International Edition, 2009, 48, 6282-6285.	7.2	46
32	Optimizing Biosensing Properties on Undecylenic Acid-Functionalized Diamond. Langmuir, 2007, 23, 5824-5830.	1.6	43
33	Diamond-Based Molecular Platform for Photoelectrochemistry. Journal of the American Chemical Society, 2008, 130, 17218-17219.	6.6	43
34	Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension. ACS Photonics, 2016, 3, 1986-1992.	3.2	42
35	Scalable Production of Graphene Oxide Using a 3D-Printed Packed-Bed Electrochemical Reactor with a Boron-Doped Diamond Electrode. ACS Applied Nano Materials, 2019, 2, 867-878.	2.4	41
36	The Chemistry of CH Bond Activation on Diamond. Chemistry - an Asian Journal, 2010, 5, 1532-1540.	1.7	40

#	Article	IF	Citations
37	Mild and Efficient Functionalization of Hydrogen-Terminated Si(111) via Sonochemical Activated Hydrosilylation. Journal of the American Chemical Society, 2011, 133, 8118-8121.	6.6	37
38	Ca ²⁺ and Ga ³⁺ doped LaMnO ₃ perovskite as a highly efficient and stable catalyst for two-step thermochemical water splitting. Sustainable Energy and Fuels, 2017, 1, 1013-1017.	2.5	37
39	Syntheses and catalytic activities of Group 4 metal complexes derived from C(cage)-appended cyclohexyloxocarborane trianion. Journal of Organometallic Chemistry, 2005, 690, 2802-2808.	0.8	36
40	Oxygenâ€Terminated Nanocrystalline Diamond Film as an Efficient Anode in Photovoltaics. Advanced Functional Materials, 2010, 20, 1313-1318.	7.8	35
41	The role of electrolyte acid concentration in the electrochemical exfoliation of graphite: Mechanism and synthesis of electrochemical graphene oxide. Nano Materials Science, 2019, 1, 215-223.	3.9	35
42	Enhanced electrochemical production and facile modification of graphite oxide for cost-effective sodium ion battery anodes. Carbon, 2021, 177, 71-78.	5.4	34
43	Largeâ€Scale Production of Bismuth Chalcogenide and Graphene Heterostructure and Its Application for Flexible Broadband Photodetector. Advanced Electronic Materials, 2016, 2, 1600077.	2.6	33
44	Design of three-dimensional hierarchical TiO ₂ /SrTiO ₃ heterostructures towards selective CO ₂ photoreduction. Inorganic Chemistry Frontiers, 2019, 6, 1667-1674.	3.0	33
45	Electrolyte Effect on Electrocatalytic Hydrogen Evolution Performance of One-Dimensional Cobalt–Dithiolene Metal–Organic Frameworks: A Theoretical Perspective. ACS Applied Energy Materials, 2018, 1, 1688-1694.	2.5	27
46	Room temperature production of graphene oxide with thermally labile oxygen functional groups forÂimproved lithium ion battery fabrication and performance. Journal of Materials Chemistry A, 2019, 7, 9646-9655.	5.2	27
47	A Multifunctional Wearable Device with a Graphene/Silver Nanowire Nanocomposite for Highly Sensitive Strain Sensing and Drug Delivery. Journal of Carbon Research, 2019, 5, 17.	1.4	26
48	Ru(bpy)32+-sensitized {001} facets LiCoO2 nanosheets catalyzed CO2 reduction reaction with 100% carbonaceous products. Nano Research, 2022, 15, 1061-1068.	5.8	24
49	Scalable Spray Drying Production of Amorphous V ₂ O ₅ –EGO 2D Heterostructured Xerogels for Highâ€Rate and Highâ€Capacity Aqueous Zinc Ion Batteries. Small, 2022, 18, e2105761.	5.2	24
50	Ni–Co–O hole transport materials: gap state assisted hole extraction with superior electrical conductivity. Journal of Materials Chemistry A, 2019, 7, 20905-20910.	5.2	23
51	Electrochemically Exfoliated Platinum Dichalcogenide Atomic Layers for High-Performance Air-Stable Infrared Photodetectors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8518-8527.	4.0	23
52	A focus review on 3D printing of wearable energy storage devices. , 2022, 4, 1242-1261.		23
53	Harnessing the Potential of Graphitic Carbon Nitride for Optoelectronic Applications. Advanced Optical Materials, 2021, 9, 2100146.	3.6	22
54	Electrochemically-derived graphene oxide membranes with high stability and superior ionic sieving. Chemical Communications, 2019, 55, 4075-4078.	2.2	21

#	Article	IF	Citations
55	Nanocontact-induced catalytic activation in palladium nanoparticles. Nanoscale, 2009, 1, 391.	2.8	20
56	Elemental 2D Materials: Solutionâ€Processed Synthesis and Applications in Electrochemical Ammonia Production. Advanced Functional Materials, 2022, 32, 2107280.	7.8	20
57	Direct Photochemical Functionalization of Si(111) with Undecenol. Langmuir, 2011, 27, 1796-1802.	1.6	19
58	Enhanced Thermochemical Water Splitting through Formation of Oxygen Vacancy in La _{0.6} Sr _{0.4} BO _{3â$^{\circ}$<i>$^{\circ}$</i>} (B=Cr, Mn, Fe, Co, and Ni) Perovskites. ChemPlusChem, 2018, 83, 924-928.	1.3	19
59	A novel carbazole derivative containing fluorobenzene unit: aggregation-induced fluorescence emission, polymorphism, mechanochromism and non-reversible thermo-stimulus fluorescence. CrystEngComm, 2018, 20, 2772-2779.	1.3	18
60	Hollow Melonâ€Seedâ€Shaped Lithium Iron Phosphate Micro―and Subâ€Micrometer Plates for Lithiumâ€Ion Batteries. ChemSusChem, 2014, 7, 1618-1622.	3.6	16
61	UV-visible-near infrared photoabsorption and photodetection using close-packed metallic gold nanoparticle network. Journal of Applied Physics, 2010, 107, 053510.	1.1	15
62	Enhanced Electrohydrodynamics for Electrospinning a Highly Sensitive Flexible Fiber-Based Piezoelectric Sensor. ACS Applied Electronic Materials, 2022, 4, 1301-1310.	2.0	15
63	Enhanced Thermochemical H2 Production on Ca-Doped Lanthanum Manganite Perovskites Through Optimizing the Dopant Level and Re-oxidation Temperature. Acta Metallurgica Sinica (English Letters), 2018, 31, 431-439.	1.5	13
64	Tungstenâ€Doped Nanocrystalline V ₆ O ₁₃ Nanoparticles as Lowâ€Cost and Highâ€Performance Electrodes for Energy Storage Devices. Energy Technology, 2019, 7, 1801041.	1.8	10
65	Sulfur-Functionalized Titanium Carbide Ti ₃ C ₂ T _{<i>>x</i>} (MXene) Nanosheets Modified Light Absorbers for Ambient Fabrication of Sb ₂ S ₃ Solar Cells. ACS Applied Nano Materials, 2022, 5, 12107-12116.	2.4	7
66	Potassium spin polarization lifetime for a 30-carbon chain siloxane film. Journal of Chemical Physics, 2012, 137, 174703.	1.2	6
67	Substituent Effects on the Kinetics of Bifunctional Styrene SAM Formation on H-Terminated Si. Langmuir, 2014, 30, 7687-7694.	1.6	6
68	Facile Synthesis of Boron-Doped Reduced Electrochemical Graphene Oxide for Sodium Ion Battery Anode. Jom, 2021, 73, 2531.	0.9	6
69	Sustainable Recycling of Formic Acid by Bio-Catalytic CO2 Capture and Re-Hydrogenation. Journal of Carbon Research, 2019, 5, 22.	1.4	5
70	Fast and cost-effective room temperature synthesis of high quality graphene oxide with excellent structural intactness. Sustainable Materials and Technologies, 2020, 25, e00198.	1.7	4
71	Phosphorus and Sulfur Coâ€Doped Cobaltous Oxide Synthesized by an Inorganicâ€Saltâ€Assisted Method: Reaction Mechanism and Electrocatalytic Application. ChemPlusChem, 2020, 85, 1602-1611.	1.3	4
72	Nanomaterials and Composites for Energy Conversion and Storage. Jom, 2021, 73, 2752-2753.	0.9	3

#	Article	IF	CITATIONS
73	Flexible and stretchable inorganic electronics: Conductive materials, fabrication strategy, and applicable devices., 2020,, 199-252.		2
74	Exfoliated 2D Antimoneneâ€Based Structures for Lightâ€Harvesting Photoactive Layer of Highly Stable Solar Cells. Small Structures, 0, , 2200038.	6.9	2
75	Graphene Photodetectors: Large-Scale Production of Bismuth Chalcogenide and Graphene Heterostructure and Its Application for Flexible Broadband Photodetector (Adv. Electron. Mater.) Tj ETQq1 1 0.7	84 3.1 64 rgB	T /Overlock
76	Heat and Electro-Responsive Nanomaterials for Smart Windows. Springer Series in Materials Science, 2020, , 215-243.	0.4	1
77	3rd International Symposium on Renewable Energy Technologies. Energy Technology, 2019, 7, 1900605.	1.8	0