Timothy J Fuhrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8332792/publications.pdf

Version: 2024-02-01

17 papers	585 citations	1040056 9 h-index	1058476 14 g-index
pupero	Citations	II IIICX	5 macx
17 all docs	17 docs citations	17 times ranked	438 citing authors

#	Article	IF	CITATIONS
1	A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism. Nature Chemistry, 2013, 5, 880-885.	13.6	138
2	Gd ₂ @C ₇₉ N: Isolation, Characterization, and Monoadduct Formation of a Very Stable Heterofullerene with a Magnetic Spin State of $\langle i \rangle S \langle i \rangle = 15/2$. Journal of the American Chemical Society, 2011, 133, 9741-9750.	13.7	104
3	Nanoscale Fullerene Compression of an Yttrium Carbide Cluster. Journal of the American Chemical Society, 2012, 134, 8487-8493.	13.7	92
4	89Y and 13C NMR Cluster and Carbon Cage Studies of an Yttrium Metallofullerene Family, Y3N@C2n (n) Tj ETQq0	0.0 rgBT 13.7	/Overlock 1
5	Highly Regioselective Derivatization of Trimetallic Nitride Templated Endohedral Metallofullerenes via a Facile Photochemical Reaction. Journal of the American Chemical Society, 2008, 130, 17755-17760.	13.7	72
6	Enhanced Dipole Moments in Trimetallic Nitride Template Endohedral Metallofullerenes with the Pentalene Motif. Journal of the American Chemical Society, 2013, 135, 3351-3354.	13.7	28
7	Electronic Properties and 13C NMR Structural Study of Y3N@C88. Inorganic Chemistry, 2011, 50, 4256-4259.	4.0	24
8	Theoretical Explanation of Reaction Site Selectivity in the Addition of a Phenoxy Group to Perfluoropyridine. Journal of Physical Chemistry A, 2019, 123, 9450-9455.	2.5	18
9	Toward Taming the Chemical Reversibility of Perfluoropyridine through Molecular Design with Applications to Pre- and Postmodifiable Polymer Architectures. Macromolecules, 2021, 54, 5586-5594.	4.8	11
10	Fluoromaticity: The Molecular Orbital Contributions of Fluorine Substituents to the π-Systems of Aromatic Rings. ACS Omega, 2021, 6, 32607-32617.	3.5	6
11	Isolated pentagon rule violating endohedral metallofullerenes explained using the <scp>H</scp> Ľckel rule: A statistical mechanical study of the <scp>C</scp> ₈₄ Isomeric Set. Journal of Computational Chemistry, 2015, 36, 146-150.	3.3	5
12	Faculty Professional Development on Inclusive Pedagogy Yields Chemistry Curriculum Transformation, Equity Awareness, and Community. Journal of Chemical Education, 2022, 99, 291-300.	2.3	4
13	Density Functional Theory Investigation of Fulvene-Derivatized Fullerenes as Candidates for Organic Solar Cells. Journal of Physical Chemistry A, 2020, 124, 10324-10329.	2.5	1
14	Theoretical Prediction and Explanation of Reaction Site Selectivity in the Addition of a Phenoxy Group to Perfluoropyrimidine, Perfluoropyridazine, and Perfluoropyrazine. Molecules, 2021, 26, 7637.	3.8	1
15	Computational study of synergistic effects of electron withdrawing groups as catalysts for fullerene formation. Chemical Data Collections, 2018, 17-18, 415-418.	2.3	O
16	Temperature Dependent Stabilities of the C32 and K@C32, Ca@C32 and Sc@C32 Endohedral Metallofullerene Isomeric Set. Chemical Data Collections, 2020, 28, 100409.	2.3	0
17	Thiourea-Catalyzed Amidation of Esters: A New Method for the Preparation of Amides. Letters in Organic Chemistry, 2022, 19, .	0.5	0