
Glenna C L Bett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8332689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computer model of action potential of mouse ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1378-H1403.	1.5	261
2	The Toxoplasma Dense Granule Proteins GRA17 and GRA23 Mediate the Movement of Small Molecules between the Host and the Parasitophorous Vacuole. Cell Host and Microbe, 2015, 17, 642-652.	5.1	208
3	Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15432-15437.	3.3	186
4	Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovascular Research, 2014, 104, 258-269.	1.8	167
5	Stretch-activated whole cell currents in adult rat cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H548-H557.	1.5	148
6	Electronic "expression―of the inward rectifier in cardiocytes derived from human-induced pluripotent stem cells. Heart Rhythm, 2013, 10, 1903-1910.	0.3	118
7	Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. DMM Disease Models and Mechanisms, 2015, 8, 457-466.	1.2	111
8	Relaxin Suppresses Atrial Fibrillation by Reversing Fibrosis and Myocyte Hypertrophy and Increasing Conduction Velocity and Sodium Current in Spontaneously Hypertensive Rat Hearts. Circulation Research, 2013, 113, 313-321.	2.0	103
9	Mechanism of automaticity in cardiomyocytes derived from human induced pluripotent stem cells. Journal of Molecular and Cellular Cardiology, 2015, 81, 81-93.	0.9	92
10	Sex differences in the mechanisms underlying long QT syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H640-H648.	1.5	78
11	Models of HERG Gating. Biophysical Journal, 2011, 101, 631-642.	0.2	52
12	Ancillary subunits and stimulation frequency determine the potency of chromanol 293B block of the KCNQ1 potassium channel. Journal of Physiology, 2006, 576, 755-767.	1.3	48
13	Time- and Voltage-Dependent Components of Kv4.3 Inactivation. Biophysical Journal, 2005, 89, 3026-3041.	0.2	46
14	Kv1.4 channel block by quinidine: evidence for a drugâ€induced allosteric effect. Journal of Physiology, 2003, 546, 387-401.	1.3	39
15	Câ€īype Inactivation Involves a Significant Decrease in the Intracellular Aqueous Pore Volume of Kv1.4 K + Channels Expressed in Xenopus Oocytes. Journal of Physiology, 2003, 549, 683-695.	1.3	36
16	A Model of the Interaction between N-type and C-type Inactivation in Kv1.4 Channels. Biophysical Journal, 2011, 100, 11-21.	0.2	36
17	Identification of an INa-dependent and Ito-mediated proarrhythmic mechanism in cardiomyocytes derived from pluripotent stem cells of a Brugada syndrome patient. Scientific Reports, 2018, 8, 11246.	1.6	31
18	Genomic upregulation of cardiac Cav1.2α and NCX1 by estrogen in women. Biology of Sex Differences, 2017, 8, 26.	1.8	30

Glenna C L Bett

#	Article	IF	CITATIONS
19	A Mouse Model of Timothy Syndrome: a Complex Autistic Disorder Resulting from a Point Mutation in Cav1.2. North American Journal of Medicine & Science, 2012, 5, 135.	3.8	30
20	Regulation of N- and C-type inactivation of Kv1.4 by pH _o and K ⁺ : evidence for transmembrane communication. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H71-H80.	1.5	28
21	A model of graded calcium release and L-type Ca2+ channel inactivation in cardiac muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1154-H1169.	1.5	28
22	Hormones and sex differences: changes in cardiac electrophysiology with pregnancy. Clinical Science, 2016, 130, 747-759.	1.8	28
23	Modification of K ⁺ channel–drug interactions by ancillary subunits. Journal of Physiology, 2008, 586, 929-950.	1.3	27
24	Inactivation and recovery in Kv1.4 K+channels: lipophilic interactions at the intracellular mouth of the pore. Journal of Physiology, 2004, 556, 109-120.	1.3	26
25	Regional variation of the inwardly rectifying potassium current in the canine heart and the contributions to differences in action potential repolarization. Journal of Molecular and Cellular Cardiology, 2015, 84, 52-60.	0.9	26
26	Functionally-Distinct Proton-Binding in HERG Suggests the Presence of Two Binding Sites. Cell Biochemistry and Biophysics, 2003, 39, 183-194.	0.9	22
27	KChIP2b modulates the affinity and use-dependent block of Kv4.3 by nifedipine. Biochemical and Biophysical Research Communications, 2006, 340, 1167-1177.	1.0	22
28	Hyperpolarization-Activated Cation Channels Are Expressed in Rat Hypothalamic Gonadotropin-Releasing Hormone (GnRH) Neurons and Immortalized GnRH Neurons. Journal of the Society for Gynecologic Investigation, 2006, 13, 442-450.	1.9	22
29	Markov Models of Use-Dependence and Reverse Use-Dependence during the Mouse Cardiac Action Potential. PLoS ONE, 2012, 7, e42295.	1.1	19
30	Cholinergic modulation of the basal Lâ€ŧype calcium current in ferret right ventricular myocytes. Journal of Physiology, 2002, 542, 107-117.	1.3	17
31	Regulation of the voltage-insensitive step of HERG activation by extracellular pH. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1710-H1718.	1.5	17
32	Pregnancy in postural tachycardia syndrome: clinical course and maternal and fetal outcomes. Journal of Maternal-Fetal and Neonatal Medicine, 2012, 25, 1631-1634.	0.7	15
33	Expression of Kv4.3 Voltage-Gated Potassium Channels in Rat Gonadotrophin-Releasing Hormone (GnRH) Neurons During the Estrous Cycle. Reproductive Sciences, 2011, 18, 136-144.	1.1	12
34	Depletion of stercobilin in fecal matter from a mouse model of autism spectrum disorders. Metabolomics, 2017, 13, 1.	1.4	9
35	Effect of quantitative feedback on student performance on the National Board Medical Examination in an obstetrics and gynecology clerkship. American Journal of Obstetrics and Gynecology, 2007, 197, 530.e1-530.e5.	0.7	6
36	Computer Models of Ion Channels. , 2002, , 1-60.		6

Computer Models of Ion Channels. , 2002, , 1-60. 36

Glenna C L Bett

#	Article	IF	CITATIONS
37	Interaction of the S6 Proline Hinge with N-Type and C-Type Inactivation inÂKv1.4 Channels. Biophysical Journal, 2012, 103, 1440-1450.	0.2	5
38	Autism and induced labor: is calcium a potential mechanistic link?. American Journal of Obstetrics and Gynecology, 2014, 210, 494-495.	0.7	4
39	Triple-Marker Prenatal Screening Program for Chromosomal Defects. Obstetrics and Gynecology, 2009, 114, 1147.	1.2	3
40	Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Development (Cambridge), 2015, 142, e0905-e0905.	1.2	3
41	Sex specific association of potassium channel subunits. Journal of Physiology, 2011, 589, 5345-5346.	1.3	2
42	Action Potential Shape Is a Crucial Measure of Cell Type of Stem Cell-Derived Cardiocytes. Biophysical Journal, 2016, 110, 284-286.	0.2	2
43	Na-Ca Exchange Current During the Cardiac Action Potential. Advances in Experimental Medicine and Biology, 1992, 311, 453-454.	0.8	2
44	Counseling and screening for chromosomal abnormalities. American Journal of Obstetrics and Gynecology, 2010, 202, e13.	0.7	1
45	Enhanced Differentiation of Stem Cell Derived Cardiac Myocytes by Electronic Expression of IK1 Reveals an Atrial-Specific Kv1.5-Like Current. Biophysical Journal, 2014, 106, 631a.	0.2	1
46	Modeling HERG Gating Transitions. Biophysical Journal, 2011, 100, 426a.	0.2	0
47	The HERG N-Terminal Interacts with Voltage Sensitive Transitions. Biophysical Journal, 2012, 102, 328a.	0.2	Ο
48	Activation and Inactivation Steps Altered by Proline Hinge Mutations in Kv1.4. Biophysical Journal, 2013, 104, 126a.	0.2	0
49	Reconciling computer models and stem cell models of human cardiac repolarization: reply. Cardiovascular Research, 2015, 106, 6-7.	1.8	0
50	Cav1.2 Ca 2+ channel knockâ€down alters colonic smooth muscle function. FASEB Journal, 2011, 25, lb572.	0.2	0
51	Quantitative Analysis of Uterine Action Potentials. Journal of Genital System & Disorders, 2012, 01, 1000e102.	0.0	0
52	A Cav1.2 Ca 2+ channel mutation that reduces intestinal smooth muscle contractility. FASEB Journal, 2013, 27, .	0.2	0