Edmund Maser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8332459/publications.pdf

Version: 2024-02-01

76326 106344 5,210 145 40 65 citations h-index g-index papers 150 150 150 4510 times ranked docs citations citing authors all docs

#	Article	IF	Citations
1	Induction of carbonyl reductase 1 (CR1) gene expression in Daphnia magna by TNT, but not its key metabolites 2-ADNT and 4-ADNT. Chemico-Biological Interactions, 2022, 351, 109752.	4.0	2
2	Reduction of photoswitched, nitrogen bridged N-acetyl diazocines limits inhibition of $17\hat{1}^2$ HSD3 activity in transfected human embryonic kidney 293Âcells. Chemico-Biological Interactions, 2022, 354, 109822.	4.0	6
3	Carbonyl reduction of 4-oxonon-2-enal (4-ONE) by Sniffer from D. magna and D. pulex. Chemico-Biological Interactions, 2022, 354, 109833.	4.0	O
4	Inhibition of human carbonyl reducing enzymes by plant anthrone and anthraquinone derivatives. Chemico-Biological Interactions, 2022, 354, 109823.	4.0	2
5	Acute aquatic toxicity of arsenic-based chemical warfare agents to Daphnia magna. Aquatic Toxicology, 2021, 230, 105693.	4.0	14
6	A Toolbox for the Determination of Nitroaromatic Explosives in Marine Water, Sediment, and Biota Samples on Femtogram Levels by GC-MS/MS. Toxics, 2021, 9, 60.	3.7	16
7	Can seafood from marine sites of dumped World War relicts be eaten?. Archives of Toxicology, 2021, 95, 2255-2261.	4.2	21
8	Exposure to dissolved TNT causes multilevel biological effects in Baltic mussels (Mytilus spp.). Marine Environmental Research, 2021, 167, 105264.	2.5	13
9	Machine Learning Predicts the Presence of 2,4,6-Trinitrotoluene in Sediments of a Baltic Sea Munitions Dumpsite Using Microbial Community Compositions. Frontiers in Microbiology, 2021, 12, 626048.	3.5	6
10	Degradation of 2,4,6-Trinitrotoluene (TNT): Involvement of Protocatechuate 3,4-Dioxygenase (P34O) in Buttiauxella sp. S19-1. Toxics, 2021, 9, 231.	3.7	15
11	Genomic analysis of Gordonia polyisoprenivorans strain R9, a highly effective 17 beta-estradiol- and steroid-degrading bacterium. Chemico-Biological Interactions, 2021, 350, 109685.	4.0	3
12	Sexâ€specificity in lung cancer risk. International Journal of Cancer, 2020, 146, 2376-2382.	5.1	113
13	The explosive trinitrotoluene (TNT) induces gene expression of carbonyl reductase in the blue mussel (Mytilus spp.): a new promising biomarker for sea dumped war relicts?. Archives of Toxicology, 2020, 94, 4043-4054.	4.2	16
14	Marine bivalves as bioindicators for environmental pollutants with focus on dumped munitions in the sea: A review. Marine Environmental Research, 2020, 158, 105006.	2.5	42
15	"Don't Blast― blast-in-place (BiP) operations of dumped World War munitions in the oceans significantly increase hazards to the environment and the human seafood consumer. Archives of Toxicology, 2020, 94, 1941-1953.	4.2	23
16	Carbonyl reductase sniffer from the model organism daphnia: Cloning, substrate determination and inhibitory sensitivity. Chemico-Biological Interactions, 2019, 307, 29-36.	4.0	8
17	Potent inhibition of human carbonyl reductase 1 (CBR1) by the prenylated chalconoid xanthohumol and its related prenylflavonoids isoxanthohumol and 8-prenylnaringenin. Chemico-Biological Interactions, 2019, 305, 156-162.	4.0	10
18	Expression and activity of the cortisol-activating enzyme $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1 is tissue and species-specific. Chemico-Biological Interactions, 2019, 303, 57-61.	4.0	18

#	Article	IF	CITATIONS
19	The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 607-614.	5 . 2	23
20	Crystal structure and catalytic characterization of the dehydrogenase/reductase <scp>SDR</scp> family member 4 (<scp>DHRS</scp> 4) from <i>Caenorhabditis elegans</i> . FEBS Journal, 2018, 285, 275-293.	4.7	11
21	Selective Inhibition of Human AKR1B10 by n-Humulone, Adhumulone and Cohumulone Isolated from Humulus Iupulus Extract. Molecules, 2018, 23, 3041.	3.8	11
22	Bioaccumulation of 2,4,6-trinitrotoluene (TNT) and its metabolites leaking from corroded munition in transplanted blue mussels (M. edulis). Marine Pollution Bulletin, 2018, 135, 1072-1078.	5.0	40
23	Carbonyl reductases from <i>Daphnia</i> are regulated by redox cycling compounds. FEBS Journal, 2018, 285, 2869-2887.	4.7	11
24	Sex hormones reduce NNK detoxification through inhibition of short-chain dehydrogenases/reductases and aldo-keto reductases inÂvitro. Chemico-Biological Interactions, 2017, 276, 167-173.	4.0	11
25	Regulation of $11\hat{1}^2$ -hydroxysteroid dehydrogenase type 1 following caloric restriction and re-feeding is species dependent. Chemico-Biological Interactions, 2017, 276, 95-104.	4.0	3
26	Biomonitoring of 2,4,6-trinitrotoluene and degradation products in the marine environment with transplanted blue mussels (M. edulis). Toxicology, 2017, 390, 117-123.	4.2	49
27	Different inhibitory potential of sex hormones on NNK detoxification inÂvitro : A possible explanation for gender-specific lung cancer risk. Cancer Letters, 2017, 405, 120-126.	7.2	18
28	The cortisol-activating enzyme $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1 in skeletal muscle in the pathogenesis of the metabolic syndrome. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 65-71.	2.5	15
29	Transcriptional regulation of human and murine short-chain dehydrogenase/reductases (SDRs) – an in silico approach. Drug Metabolism Reviews, 2016, 48, 183-217.	3.6	8
30	Regulation of alkane degradation pathway by a TetR family repressor via an autoregulation positive feedback mechanism in a Gramâ€positive ⟨i⟩Dietzia⟨/i⟩ bacterium. Molecular Microbiology, 2016, 99, 338-359.	2.5	43
31	Inhibition of human anthracycline reductases by emodin $\hat{a}\in$ A possible remedy for anthracycline resistance. Toxicology and Applied Pharmacology, 2016, 293, 21-29.	2.8	18
32	Reductases. , 2016, , 3964-3969.		0
33	Curcumin is a tight-binding inhibitor of the most efficient human daunorubicin reductase – Carbonyl reductase 1. Chemico-Biological Interactions, 2015, 234, 162-168.	4.0	23
34	Isolation and identification of a repressor TetR for $3,17\hat{1}^2$ -HSD expressional regulation in Comamonas testosteroni. Chemico-Biological Interactions, 2015, 234, 205-212.	4.0	18
35	Identification and isolation of a regulator protein for $3,17\hat{l}^2$ -HSD expressional regulation in Comamonas testosteroni. Chemico-Biological Interactions, 2015, 234, 197-204.	4.0	11
36	Reduction of lipid peroxidation products and advanced glycation endâ€product precursors by cyanobacterial aldoâ€keto reductase AKR3G1—a founding member of the AKR3G subfamily. FASEB Journal, 2015, 29, 263-273.	0.5	10

#	Article	IF	CITATIONS
37	Construction of a biosensor mutant of Comamonas testosteroni for testosterone determination by cloning the EGFP gene downstream to the regulatory region of the $3,17\hat{l}^2$ -HSD gene. Chemico-Biological Interactions, 2015, 234, 188-196.	4.0	10
38	Human <scp>DCXR</scp> â€" another †moonlighting protein' involved in sugar metabolism, carbonyl detoxification, cell adhesion and male fertility?. Biological Reviews, 2015, 90, 254-278.	10.4	36
39	Toxicity of Functional Nano-Micro Zinc Oxide Tetrapods: Impact of Cell Culture Conditions, Cellular Age and Material Properties. PLoS ONE, 2014, 9, e84983.	2.5	95
40	Green Tea and One of Its Constituents, Epigallocatechine-3-gallate, Are Potent Inhibitors of Human $11\hat{1}^2$ -hydroxysteroid Dehydrogenase Type 1. PLoS ONE, 2014, 9, e84468.	2.5	41
41	Additivity, antagonism, and synergy in arsenic trioxide-induced growth inhibition of C6 glioma cells: Effects of genistein, quercetin and buthionine-sulfoximine. Food and Chemical Toxicology, 2014, 67, 212-221.	3.6	19
42	Reductases. , 2014, , 1-6.		0
43	S-Nitrosoglutathione covalently modifies cysteine residues of human carbonyl reductase 1 and affects its activity. Chemico-Biological Interactions, 2013, 202, 136-145.	4.0	9
44	Identification of microRNAs as a potential novel regulatory mechanism in HSD11B1 expression. Journal of Steroid Biochemistry and Molecular Biology, 2013, 133, 129-139.	2.5	17
45	A novel transcriptional repressor PhaR for the steroid-inducible expression of the $3,17\hat{l}^2$ -hydroxysteroid dehydrogenase gene in Comamonas testosteroni ATCC11996. Chemico-Biological Interactions, 2013, 202, 116-125.	4.0	16
46	Introduction. Chemico-Biological Interactions, 2013, 202, 1.	4.0	0
47	Analysis and characterization of eight estradiol inducible genes and a strong promoter from the steroid degrading marine bacterial strain S19-1. Chemico-Biological Interactions, 2013, 202, 159-167.	4.0	4
48	Targeting Acetyl-CoA Carboxylases: Small Molecular Inhibitors and their Therapeutic Potential. Recent Patents on Anti-Cancer Drug Discovery, 2012, 7, 168-184.	1.6	28
49	Identification and Characterization of the LysR-Type Transcriptional Regulator HsdR for Steroid-Inducible Expression of the 3α-Hydroxysteroid Dehydrogenase/Carbonyl Reductase Gene in Comamonas testosteroni. Applied and Environmental Microbiology, 2012, 78, 941-950.	3.1	16
50	Genome Sequence of Comamonas testosteroni ATCC 11996, a Representative Strain Involved in Steroid Degradation. Journal of Bacteriology, 2012, 194, 1633-1634.	2.2	23
51	Oligomerization and negative autoregulation of the LysR-type transcriptional regulator HsdR from Comamonas testosteroni. Journal of Steroid Biochemistry and Molecular Biology, 2012, 132, 203-211.	2.5	9
52	Cloning, expression and characterization of a novel short-chain dehydrogenase/reductase (SDRx) in Comamonas testosteroni. Journal of Steroid Biochemistry and Molecular Biology, 2012, 129, 15-21.	2.5	12
53	Identification of a new steroid degrading bacterial strain H5 from the Baltic Sea and isolation of two estradiol inducible genes. Journal of Steroid Biochemistry and Molecular Biology, 2012, 129, 22-30.	2.5	18
54	Hydroxysteroid dehydrogenases (HSDs) in bacteria – A bioinformatic perspective. Journal of Steroid Biochemistry and Molecular Biology, 2012, 129, 31-46.	2.5	94

#	Article	IF	CITATIONS
55	Momordica charantia extract, a herbal remedy for type 2 diabetes, contains a specific $11^{\hat{1}^2}$ -hydroxysteroid dehydrogenase type 1 inhibitor. Journal of Steroid Biochemistry and Molecular Biology, 2012, 128, 51-55.	2.5	35
56	Steroids and microorganisms. Journal of Steroid Biochemistry and Molecular Biology, 2012, 129, 1-3.	2.5	13
57	Expression of human carbonyl reductase 3 (CBR3; SDR21C2) is inducible by pro-inflammatory stimuli. Biochemical and Biophysical Research Communications, 2012, 420, 368-373.	2.1	9
58	16th Carbonyl Metabolism Meeting: from enzymology to genomics. Human Genomics, 2012, 6, 25.	2.9	1
59	Shortâ€chain dehydrogenases/reductases in cyanobacteria. FEBS Journal, 2012, 279, 1030-1043.	4.7	23
60	Specificity of Human Aldo-Keto Reductases, NAD(P)H:Quinone Oxidoreductase, and Carbonyl Reductases to Redox-Cycle Polycyclic Aromatic Hydrocarbon Diones and 4-Hydroxyequilenin- <i>>o-</i> >quinone. Chemical Research in Toxicology, 2011, 24, 2153-2166.	3.3	43
61	The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (40NE) reductase. Chemico-Biological Interactions, 2011, 191, 48-54.	4.0	20
62	Characterization of the steroid degrading bacterium S19-1 from the Baltic Sea at Kiel, Germany. Chemico-Biological Interactions, 2011, 191, 83-88.	4.0	28
63	Analysis of alternative promoter usage in expression of HSD11B1 including the development of a transcript-specific quantitative real-time PCR method. Chemico-Biological Interactions, 2011, 191, 104-112.	4.0	13
64	Studies on reduction of S-nitrosoglutathione by human carbonyl reductases 1 and 3. Chemico-Biological Interactions, 2011, 191, 95-103.	4.0	21
65	Steroid degradation and two steroid-inducible enzymes in the marine bacterium H5. Chemico-Biological Interactions, 2011, 191, 89-94.	4.0	16
66	Bioinformatic and biochemical characterization of DCXR and DHRS2/4 from Caenorhabditis elegans. Chemico-Biological Interactions, 2011, 191, 75-82.	4.0	16
67	Reductases., 2011,, 3209-3214.		0
68	Human Carbonyl Reductases. Current Drug Metabolism, 2010, 11, 639-658.	1.2	64
69	Regulation of Human Carbonyl Reductase 3 (CBR3; SDR21C2) Expression by Nrf2 in Cultured Cancer Cells. Biochemistry, 2010, 49, 8499-8511.	2.5	39
70	$11\hat{l}^2$ -Hydroxysteroid dehydrogenase type 1 is an important regulator at the interface of obesity and inflammation. Journal of Steroid Biochemistry and Molecular Biology, 2010, 119, 56-72.	2.5	94
71	The Comamonas testosteroni steroid biosensor system (COSS)â€"Reflection on other methods. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 633-640.	2.5	11
72	Cis- and trans-regulatory elements of 3α-hydroxysteroid dehydrogenase/carbonyl reductase as biosensor system for steroid determination in the environment. Chemico-Biological Interactions, 2009, 178, 215-220.	4.0	13

#	Article	IF	Citations
73	Role of human aldo–keto-reductase AKR1B10 in the protection against toxic aldehydes. Chemico-Biological Interactions, 2009, 178, 145-150.	4.0	97
74	3α-Hydroxysteroid dehydrogenase/carbonyl reductase as a tool for isolation and characterization of a new marine steroid degrading bacterial strain. Chemico-Biological Interactions, 2009, 178, 206-210.	4.0	12
75	The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chemico-Biological Interactions, 2009, 178, 94-98.	4.0	329
76	Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis. Chemico-Biological Interactions, 2009, 178, 234-241.	4.0	27
77	Partial purification and characterization of a new human membrane-bound carbonyl reductase playing a role in the deactivation of the anticancer drug oracin. Toxicology, 2009, 264, 52-60.	4.2	12
78	Effects of synthetic gestagens on fish reproduction. Environmental Toxicology and Chemistry, 2009, 28, 2663-2670.	4.3	226
79	$11\hat{l}^2$ -Hydroxysteroid dehydrogenase type 1 inhibitors with oleanan and ursan scaffolds. Molecular and Cellular Endocrinology, 2009, 301, 132-136.	3.2	22
80	Expression profiles of human $11\hat{l}^2$ -hydroxysteroid dehydrogenases type 1 and type 2 in inflammatory bowel diseases. Molecular and Cellular Endocrinology, 2009, 301, 104-108.	3.2	62
81	Structural Basis for Substrate Specificity in Human Monomeric Carbonyl Reductases. PLoS ONE, 2009, 4, e7113.	2.5	47
82	Inactivation of the anticancer drugs doxorubicin and oracin by aldo–keto reductase (AKR) 1C3. Toxicology Letters, 2008, 181, 1-6.	0.8	69
83	Testosterone-inducible Regulator Is a Kinase That Drives Steroid Sensing and Metabolism in Comamonas testosteroni. Journal of Biological Chemistry, 2008, 283, 17380-17390.	3.4	41
84	Carbonyl Reductase 1 Is a Predominant Doxorubicin Reductase in the Human Liver /b>. Drug Metabolism and Disposition, 2008, 36, 2113-2120.	3.3	158
85	Increased resistance of tumor cells to daunorubicin after transfection of cDNAs coding for anthracycline inactivating enzymes. Cancer Letters, 2007, 255, 49-56.	7.2	63
86	Understanding oligomerization in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: An in silico approach and evidence for an active protein. Journal of Biotechnology, 2007, 129, 131-139.	3.8	13
87	Carbonyl Reductases and Pluripotent Hydroxysteroid Dehydrogenases of the Short-chain Dehydrogenase/reductase Superfamily. Drug Metabolism Reviews, 2007, 39, 87-144.	3.6	197
88	Aldo-keto reductases (AKR) from the AKR1C subfamily catalyze the carbonyl reduction of the novel anticancer drug oracin in man. Toxicology, 2007, 238, 111-118.	4.2	33
89	Neuroprotective role for carbonyl reductase?. Biochemical and Biophysical Research Communications, 2006, 340, 1019-1022.	2.1	44
90	11Î ² -Hydroxysteroid dehydrogenase type 1: Purification from human liver and characterization as carbonyl reductase of xenobiotics. Molecular and Cellular Endocrinology, 2006, 248, 34-37.	3.2	17

#	Article	IF	CITATIONS
91	PURIFICATION AND CHARACTERIZATION OF AKR1B10 FROM HUMAN LIVER: ROLE IN CARBONYL REDUCTION OF XENOBIOTICS. Drug Metabolism and Disposition, 2006, 34, 464-470.	3.3	106
92	The novel anticancer drug oracin: different stereospecificity and cooperativity for carbonyl reduction by purified human liver $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1. Toxicology, 2004, 197, 253-261.	4.2	20
93	Human Carbonyl Reductase Catalyzes Reduction of 4-Oxonon-2-enalâ€. Biochemistry, 2004, 43, 13106-13114.	2.5	76
94	Significance of reductases in the detoxification of the tobacco-specific carcinogen NNK. Trends in Pharmacological Sciences, 2004, 25, 235-237.	8.7	38
95	Enantioselectivity of carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone by tissue fractions from human and rat and by enzymes isolated from human liver. Drug Metabolism and Disposition, 2004, 32, 915-22.	3.3	41
96	Competing Roles of Reductases in the Detoxification of the Tobacco-Specific Nitrosamine Ketone NNK. ACS Symposium Series, 2003, , 67-82.	0.5	3
97	Stereochemical aspects of carbonyl reduction of the original anticancer drug oracin by mouse liver microsomes and purified $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1. Chemico-Biological Interactions, 2003, 143-144, 459-468.	4.0	23
98	Regulation of $3\hat{l}_{\pm}$ -hydroxysteroid dehydrogenase/carbonyl reductase in Comamonas testosteroni: function and relationship of two operators. Chemico-Biological Interactions, 2003, 143-144, 411-423.	4.0	4
99	Characterization and recombinant expression of the translational repressor RepB of 3α-hydroxysteroid dehydrogenase/carbonyl reductase in Comamonas testosteroni. Chemico-Biological Interactions, 2003, 143-144, 425-433.	4.0	8
100	Enzymology and Molecular Biology of Glucocorticoid Metabolism in Humans. Progress in Molecular Biology and Translational Science, 2003, 75, 173-216.	1.9	33
101	Purification, characterization and NNK carbonyl reductase activities of $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1 from human liver: enzyme cooperativity and significance in the detoxification of a tobacco-derived carcinogen. Chemico-Biological Interactions, 2003, 143-144, 435-448.	4.0	43
102	Identification and Characterization of a Novel Translational Repressor of the Steroid-inducible 3α-Hydroxysteroid Dehydrogenase/Carbonyl Reductase Gene in Comamonas testosteroni. Journal of Biological Chemistry, 2003, 278, 47400-47407.	3.4	34
103	11β-Hydroxysteroid Dehydrogenase Type 1 from Human Liver: Dimerization and Enzyme Cooperativity Support Its Postulated Role as Glucocorticoid Reductaseâ€. Biochemistry, 2002, 41, 2459-2465.	2.5	81
104	Identification of a novel Comamonas testosteroni gene encoding a steroid-inducible extradiol dioxygenase. Biochemical and Biophysical Research Communications, 2002, 294, 560-566.	2.1	19
105	Carbonyl reduction of the potential cytostatic drugs benfluron and 3,9-dimethoxybenfluron in human in vitro. Biochemical Pharmacology, 2002, 64, 297-305.	4.4	21
106	Changes in Patient Perception and Behavior following Mohs Micrographic Surgery. Journal of Cutaneous Medicine and Surgery, 2001, 5, 14-17.	1.2	15
107	3α-Hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: biological significance, three-dimensional structure and gene regulation. Chemico-Biological Interactions, 2001, 130-132, 707-722.	4.0	35
108	A model on the regulation of 3î±-hydroxysteroid dehydrogenase/carbonyl reductase expression in Comamonas testosteroni. Chemico-Biological Interactions, 2001, 130-132, 723-736.	4.0	11

#	Article	IF	Citations
109	Characterization of enzymes participating in carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human placenta. Chemico-Biological Interactions, 2001, 130-132, 737-748.	4.0	27
110	Regulation of the Steroid-inducible 3α-Hydroxysteroid Dehydrogenase/Carbonyl Reductase Gene in Comamonas testosteroni. Journal of Biological Chemistry, 2001, 276, 9961-9970.	3.4	55
111	Two repressors for 3α-HSD gene regulation in Comamonas testosteroni. Biochemical Society Transactions, 2000, 28, A244-A244.	3.4	0
112	Molecular and structural aspects of xenobiotic carbonyl metabolizing enzymes. Role of reductases and dehydrogenases in xenobiotic phase I reactions. Toxicology, 2000, 144, 71-81.	4.2	102
113	Human $11\hat{l}^2$ -hydroxysteroid dehydrogenase 1 /carbonyl reductase: recombinant expression in the yeast Pichia pastoris and Escherichia coli. Toxicology, 2000, 144, 113-120.	4.2	32
114	Development of daunorubicin resistance in tumour cells by induction of carbonyl reduction. Biochemical Pharmacology, 2000, 59, 293-300.	4.4	115
115	Purification and characterization of oxidoreductases-catalyzing carbonyl reduction of the tobacco-specific nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human liver cytosol. Xenobiotica, 2000, 30, 755-769.	1.1	63
116	The Crystal Structure of 3î±-Hydroxysteroid Dehydrogenase/Carbonyl Reductase from Comamonas testosteroni Shows a Novel Oligomerization Pattern within the Short Chain Dehydrogenase/Reductase Family. Journal of Biological Chemistry, 2000, 275, 41333-41339.	3.4	93
117	Functional Expression, Purification, and Characterization of 3α-Hydroxysteroid Dehydrogenase/Carbonyl Reductase from Comamonas testosteroni. Biochemical and Biophysical Research Communications, 2000, 272, 622-628.	2.1	42
118	Carbonyl reduction of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by cytosolic enzymes in human liver and lung. Cancer Letters, 2000, 148, 135-144.	7.2	41
119	Characterization of $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Activities in the Renal Cell Line LLC-PK $<$ sub $>1sub>: Evidence for a Third Isoform?. Endocrine, 1999, 11, 301-308.$	2.2	2
120	Interindividual variability in the expression and NNK carbonyl reductase activity of $11\hat{1}^2$ -hydroxysteroid dehydrogenase 1 in human lung. Cancer Letters, 1999, 145, 49-56.	7.2	35
121	Cloning and Sequencing of a New Comamonas Testosteroni Gene Encoding 3α-Hydroxysteroid Dehydrogenase/Carbonyl Reductase. Advances in Experimental Medicine and Biology, 1999, 463, 395-402.	1.6	14
122	Carbonyl reduction of an anti-insect agent imidazole analogue of metyrapone in soil bacteria, invertebrate and vertebrate species. Chemico-Biological Interactions, 1998, 114, 211-224.	4.0	7
123	Molecular Cloning, Overexpression, and Characterization of Steroid-inducible 3α-Hydroxysteroid Dehydrogenase/Carbonyl Reductase from Comamonas testosteroni. Journal of Biological Chemistry, 1998, 273, 30888-30896.	3.4	78
124	11Beta-hydroxysteroid dehydrogenase responsible for carbonyl reduction of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in mouse lung microsomes. Cancer Research, 1998, 58, 2996-3003.	0.9	37
125	Testosterone-regulated expression of enzymes involved in steroid and aromatic hydrocarbon catabolism in Comamonas testosteroni. Journal of Bacteriology, 1997, 179, 5951-5955.	2.2	58
126	Stress, hormonal changes, alcohol, food constituents and drugs: factors that advance the incidence of tobacco smoke-related cancer?. Trends in Pharmacological Sciences, 1997, 18, 270-275.	8.7	23

#	Article	IF	Citations
127	Stress, hormonal changes, alcohol, food constituents and drugs: factors that advance the incidence of tobacco smoke-related cancer?. Trends in Pharmacological Sciences, 1997, 18, 270-275.	8.7	31
128	The Effect of Amiloride and Sodium Chloride on Rat Renal and Hepatic 11βâ€Hydroxysteroid Dehydrogenase Activities. Basic and Clinical Pharmacology and Toxicology, 1997, 80, 127-131.	0.0	4
129	Carbonyl Reduction of Daunorubicin in Rabbit Liver and Heart. Basic and Clinical Pharmacology and Toxicology, 1997, 80, 240-245.	0.0	15
130	The 11beta-Hydroxysteroid Dehydrogenase System, A Determinant of Glucocorticoid and Mineralocorticoid Action. Role of Type-1 11beta-Hydroxysteroid Dehydrogenase in Detoxification Processes. FEBS Journal, 1997, 249, 365-369.	0.2	64
131	Antibiotic resistance and enhanced insecticide catabolism as consequences of steroid induction in the Gram-negative bacterium Comamonas testosteroni. Journal of Steroid Biochemistry and Molecular Biology, 1996, 58, 217-223.	2.5	44
132	Induction of daunorubicin carbonyl reducing enzymes by daunorubicin in sensitive and resistant pancreas carcinoma cells. Biochemical Pharmacology, 1996, 51, 117-123.	4.4	29
133	Characterization of a 3alpha-Hydroxysteroid Dehydrogenase/Carbonyl Reductase from the Gram-Negative Bacterium Comamonas testosteroni. FEBS Journal, 1996, 241, 744-749.	0.2	76
134	The Identification of 11beta-hydroxysteroid Dehydrogenase as Carbonyl Reductase of the Tobacco-Specific Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. FEBS Journal, 1996, 238, 484-489.	0.2	72
135	Cloning and Primary Structure of Murine 11beta-Hydroxysteroid Dehydrogenase/Microsomal Carbonyl Reductase. FEBS Journal, 1995, 227, 202-208.	0.2	55
136	Xenobiotic carbonyl reduction and physiological steroid oxidoreduction. Biochemical Pharmacology, 1995, 49, 421-440.	4.4	147
137	Molecular cloning and sequencing of mouse hepatic 11 beta-hydroxysteroid dehydrogenase/carbonyl reductase. A member of the short chain dehydrogenase superfamily. Advances in Experimental Medicine and Biology, 1995, 372, 211-21.	1.6	0
138	Ontogenic pattern of carbonyl reductase activity of $11\hat{l}^2$ -hydroxysteroid dehydrogenase in mouse liver and kidney. Xenobiotica, 1994, 24, 109-117.	1.1	7
139	$11\hat{i}^2$ -hydroxysteroid dehydrogenase mediates reductive metabolism of xenobiotic carbonyl compounds. Biochemical Pharmacology, 1994, 47, 1805-1812.	4.4	82
140	The purification of $11\hat{1}^2$ -hydroxysteroid dehydrogenase from mouse liver microsomes. Journal of Steroid Biochemistry and Molecular Biology, 1994, 48, 257-263.	2.5	52
141	Carbonyl Reduction by 3α-HSD from Comamonas Testosteroni — New Properties and its Relationship to the SCAD Family. Advances in Experimental Medicine and Biology, 1993, 328, 379-390.	1.6	29
142	Functional and immunological relationships between metyrapone reductase from mouse liver microsomes and 3î±-hydroxysteroid dehydrogenase fromPseudomonas testosteroni. FEBS Letters, 1992, 297, 196-200.	2.8	24
143	The occurance of carbonyl reduction in continuous cell lines emphasizes the essentiality of this metabolic pathway. FEBS Letters, 1991, 282, 359-362.	2.8	5
144	The Influence of Cytochrome P-450 Inducers on Carbonyl Reduction in Mouse Liver. Archives of Toxicology Supplement, 1991, 14, 188-192.	0.7	2

#	Article	IF	CITATIONS
145	Characterization of Microsomal and Cytoplasmic Metyrapone Reducing Enzymes from Mouse Liver. Archives of Toxicology Supplement, 1989, 13, 271-274.	0.7	7