List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8332216/publications.pdf Version: 2024-02-01

FELLY RÃOCHER

#	Article	IF	CITATIONS
1	The Role of Biodiversity in the Functioning of Freshwater and Marine Benthic Ecosystems. BioScience, 2004, 54, 767.	2.2	296
2	Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiology Reviews, 2011, 35, 620-651.	3.9	248
3	The role of fungi in the nutrition of stream invertebrates. Botanical Journal of the Linnean Society, 1985, 91, 83-94.	0.8	239
4	Dynamics of the Fungal Population on Leaves in a Stream. Journal of Ecology, 1974, 62, 761.	1.9	235
5	Fungi in lake ecosystems. Aquatic Microbial Ecology, 2010, 59, 125-149.	0.9	193
6	Determining Diversity of Freshwater Fungi on Decaying Leaves: Comparison of Traditional and Molecular Approaches. Applied and Environmental Microbiology, 2003, 69, 2548-2554.	1.4	175
7	Leaf-conditioning by microorganisms. Oecologia, 1975, 20, 359-362.	0.9	159
8	Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms. Oecologia, 2006, 147, 658-666.	0.9	159
9	Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycological Progress, 2004, 3, 41-49.	0.5	151
10	Exotic riparian vegetation lowers fungal diversity but not leaf decomposition in Portuguese streams. Freshwater Biology, 2002, 47, 1123-1135.	1.2	142
11	Seasonal and substrate preferences of fungi colonizing leaves in streams: traditional versus molecular evidence. Environmental Microbiology, 2005, 7, 270-280.	1.8	134
12	Nutrient enrichment overwhelms diversity effects in leaf decomposition by stream fungi. Oikos, 2003, 101, 247-252.	1.2	122
13	Hyporheic biofilms — a potential food source for interstitial animals. Hydrobiologia, 1989, 184, 61-67.	1.0	107
14	Ecological stoichiometry of aquatic fungi: current knowledge and perspectives. Fungal Ecology, 2016, 19, 100-111.	0.7	98
15	Initial Colonization, Nutrient Supply, and Fungal Activity on Leaves Decaying in Streams. Applied and Environmental Microbiology, 2000, 66, 1114-1119.	1.4	97
16	Seasonality, dung specificity and competition in dung beetle assemblages in the Australian Wet Tropics, north-eastern Australia. Journal of Tropical Ecology, 2005, 21, 1-8.	0.5	97
17	Decomposition of alder leaves in two heavy metal-polluted streams in central Germany. Aquatic Microbial Ecology, 2001, 26, 73-80.	0.9	88

Leaf Mass Loss Estimated by Litter Bag Technique. , 2005, , 37-42.

#	Article	IF	CITATIONS
19	Beyond the water column: aquatic hyphomycetes outside their preferred habitat. Fungal Ecology, 2016, 19, 112-127.	0.7	87
20	Molecular evidence confirms multiple origins of aquatic hyphomycetes. Mycological Research, 2005, 109, 1407-1417.	2.5	86
21	Conidium production from leaves and needles in four streams. Canadian Journal of Botany, 1982, 60, 1487-1494.	1.2	79
22	Breakdown ofFicusandEucalyptusleaves in an organically polluted river in India: fungal diversity and ecological functions. Freshwater Biology, 1998, 39, 537-545.	1.2	78
23	Removal of fungal and total organic matter from decaying cordgrasseaves by shredder snails. Journal of Experimental Marine Biology and Ecology, 1993, 171, 39-49.	0.7	75
24	Leaf-eating invertebrates as competitors of aquatic hyphomycetes. Oecologia, 1980, 47, 303-306.	0.9	72
25	Aquatic hyphomycete spora of two Black Forest and two Swiss Jura streams. Transactions of the British Mycological Society, 1981, 76, 479-483.	0.6	72
26	Fungal colonization of alder and eucalypt leaves in two streams in Central Portugal. Archiv Für Hydrobiologie, 1995, 133, 457-470.	1.1	72
27	Fungal diversity during initial stages of leaf decomposition in a stream. Mycological Research, 2005, 109, 246-253.	2.5	71
28	The contribution of fungal enzymes to the digestion of leaves by Gammarus fossarum Koch (Amphipoda). Oecologia, 1982, 52, 1-4.	0.9	69
29	Biogeography of aquatic hyphomycetes: Current knowledge and future perspectives. Fungal Ecology, 2016, 19, 169-181.	0.7	68
30	Synthesis and antifungal and antibacterial bioactivity of cyclic diamines containing boronate esters. New Journal of Chemistry, 2003, 27, 1419.	1.4	67
31	Aquatic fungal ecology – How does it differ from terrestrial?. Fungal Ecology, 2016, 19, 5-13.	0.7	66
32	Reproduction and dispersal in aquatic hyphomycetes. Mycoscience, 2009, 50, 3-8.	0.3	64
33	Aquatic hyphomycetes in a changing environment. Fungal Ecology, 2016, 19, 14-27.	0.7	64
34	Growth and reproduction in aquatic hyphomycetes. Mycologia, 1996, 88, 80-88.	0.8	61
35	Effects of drying and freezing autumn leaves on leaching and colonization by aquatic hyphomycetes. Freshwater Biology, 1992, 28, 1-7.	1.2	60
36	Food selection in three leaf-shredding stream invertebrates. Hydrobiologia, 1995, 316, 173-181.	1.0	60

#	Article	IF	CITATIONS
37	Palladium(II) Schiff base complexes derived from sulfanilamides and aminobenzothiazoles. Transition Metal Chemistry, 2005, 30, 411-418.	0.7	60
38	Effects of Leaf Size and Decay Rate on Colonization by Aquatic Hyphomycetes. Oikos, 1983, 41, 205.	1.2	59
39	Digestive Enzymes and Feeding Strategies of Three Stream Invertebrates. Journal of the North American Benthological Society, 1986, 5, 58-66.	3.0	59
40	Aquatic hyphomycetes in sixteen streams in France, Germany and Switzerland. Transactions of the British Mycological Society, 1983, 81, 371-379.	0.6	58
41	Q-RT-PCR for Assessing Archaea, Bacteria, and Fungi During Leaf Decomposition in a Stream. Microbial Ecology, 2008, 56, 467-473.	1.4	57
42	Effects of cadmium, copper, and zinc on growth and thiol content of aquatic hyphomycetes. Hydrobiologia, 1997, 346, 77-84.	1.0	55
43	Freshwater Fungal Communities. Mycology, 2005, , 39-59.	0.5	54
44	Biodiversity of leaf litter fungi in streams along a latitudinal gradient. Science of the Total Environment, 2019, 661, 306-315.	3.9	53
45	Population dynamics and nutrition of Corophium volutator (Pallas) in the Cumberland Basin (Bay of) Tj ETQq1	1 0.784314 0.7	4 rgBT /Overlo
46	Heavy metals and thiol compounds in Mucor racemosus and Articulospora tetracladia. Mycological Research, 2001, 105, 883-889.	2.5	50
47	Raised water temperature lowers diversity of hyporheic aquatic hyphomycetes. Freshwater Biology, 2008, 53, 368-379.	1.2	50
48	Stress response in two strains of the aquatic hyphomycete Heliscus lugdunensis after exposure to cadmium and copper ions. BioMetals, 2007, 20, 93-105.	1.8	49
49	The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals. Science of the Total Environment, 2005, 345, 13-21.	3.9	48
50	Leaf surface roughness influences colonization success of aquatic hyphomycete conidia. Fungal Ecology, 2008, 1, 13-18.	0.7	48
51	Realized Fungal Diversity Increases Functional Stability of Leaf Litter Decomposition Under Zinc Stress. Microbial Ecology, 2010, 59, 84-93.	1.4	47
52	Effect of pH on Leaf Breakdown in Streams and in the Laboratory. Journal of the North American Benthological Society, 1989, 8, 203-210.	3.0	44
53	Aquatic hyphomycetes occur in hyperpolluted waters in Central Germany. Nova Hedwigia, 2001, 72, 419-428.	0.2	43
54	Potential use of barcoding to identify aquatic hyphomycetes. Fungal Diversity, 2010, 40, 51-64.	4.7	43

#	Article	IF	CITATIONS
55	Variable effects of air-drying on leaching losses from tree leaf litter. Hydrobiologia, 1996, 325, 173-182.	1.0	41
56	Response of Aquatic Hyphomycete Communities to Changes in Heavy Metal Exposure. International Review of Hydrobiology, 2005, 90, 21-32.	0.5	41
57	Topâ€down and bottomâ€up control of litter decomposers in streams. Freshwater Biology, 2014, 59, 2172-2182.	1.2	39
58	Research on Aquatic Hyphomycetes: Historical Background and Overview. Ecological Studies, 1992, , 1-15.	0.4	38
59	Molecular approaches applied to aquatic hyphomycetes. Fungal Biology Reviews, 2007, 21, 19-24.	1.9	37
60	Meta-Analysis of Drug-Eluting Balloon Angioplasty and Drug-Eluting Stent Placement for Infrainguinal Peripheral Arterial Disease. Journal of Vascular and Interventional Radiology, 2015, 26, 459-473.e4.	0.2	37
61	Biology and ecological functions of aquatic hyphomycetes in a warming climate. Fungal Ecology, 2016, 19, 201-218.	0.7	37
62	Seasonal and yearly changes in consumption of hypogeous fungi by northern flying squirrels and red squirrels in old-growth forest, New Brunswick. Canadian Journal of Zoology, 2004, 82, 110-117.	0.4	36
63	Synthesis, Characterization, and Antifungal Activity of Boron ontaining Thiosemicarbazones. Chemistry and Biodiversity, 2008, 5, 2415-2422.	1.0	36
64	Fungi on the food and in the faeces of Gammarus pulex. Transactions of the British Mycological Society, 1981, 76, 160-165.	0.6	35
65	Community Organization. Ecological Studies, 1992, , 38-76.	0.4	35
66	Growth of the salt marsh periwinkleLittoraria irrorata on fungal and cordgrass diets. Marine Biology, 1994, 118, 109-114.	0.7	34
67	Geratology and decomposition of Spartina alterniflora Loisel in a New Brunswick saltmarsh. Journal of Experimental Marine Biology and Ecology, 1996, 201, 233-252.	0.7	34
68	Water chemistry and sporulation by aquatic hyphomycetes. Mycological Research, 1997, 101, 591-596.	2.5	34
69	Fungal and Bacterial Colonisation ofSalix pedicellataLeaves Decaying in Permanent and Intermittent Streams in Eastern Morocco. International Review of Hydrobiology, 2001, 86, 337-348.	0.5	34
70	Fungi in the Hyporheic Zone of a Springbrook. Microbial Ecology, 2006, 52, 708-715.	1.4	34
71	Molecular approaches promise a deeper and broader understanding of the evolutionary ecology of aquatic hyphomycetes. Journal of the North American Benthological Society, 2010, 29, 1027-1041.	3.0	34
72	Seasonal Variation of Standing Crop and Digestibility of CPOM in a Swiss Jura Stream. Ecology, 1983, 64, 1266-1272.	1.5	33

#	Article	IF	CITATIONS
73	Fungal biomass and diversity in sediments and on leaf litter in heavy metal contaminated waters of Central Germany. Fundamental and Applied Limnology, 2008, 171, 63-74.	0.4	33
74	Aquatic hyphomycetes on leaf litter in and near a stream in Nova Scotia, Canada. Mycological Research, 1993, 97, 1530-1535.	2.5	32
75	Phenolics and Proteins Affecting Palatability of Spartina Leaves to the Gastropod Littoraria irrorata. Marine Ecology, 1994, 15, 65-75.	0.4	31
76	19. Association of animals and fungi in leaf decomposition. , 2014, , 413-442.		30
77	Quantitative methods for the analysis of zoosporic fungi. Journal of Microbiological Methods, 2012, 89, 22-32.	0.7	29
78	Seasonal variation in the organic composition of seafoam. Journal of Experimental Marine Biology and Ecology, 1989, 130, 71-80.	0.7	28
79	Does the growth rate hypothesis apply to aquatic hyphomycetes?. Fungal Ecology, 2013, 6, 493-500.	0.7	28
80	Stream salinization and fungal-mediated leaf decomposition: A microcosm study. Science of the Total Environment, 2017, 599-600, 1638-1645.	3.9	28
81	Factors that delay colonization of fresh alder leaves by aquatic hyphomycetes. Archiv Für Hydrobiologie, 1990, 119, 249-255.	1.1	28
82	Digestion of Spartina alterniflora Loisel material with and without fungal constituents by the periwinkle Littorina irrorata Say (Mollusca:Gastropoda). Journal of Experimental Marine Biology and Ecology, 1989, 130, 45-53.	0.7	27
83	Growth and Reproduction in Aquatic Hyphomycetes. Mycologia, 1996, 88, 80.	0.8	27
84	Colonization of conifer needles by aquatic hyphomycetes. Canadian Journal of Botany, 1978, 56, 57-62.	1.2	26
85	Aquatic hyphomycetes: Influence of pH, Ca2+ and HCO3â^' on growth in vitro. Transactions of the British Mycological Society, 1985, 84, 137-145.	0.6	26
86	Organic composition of seafoam and its digestion by Corophium volutator (Pallas). Journal of Experimental Marine Biology and Ecology, 1988, 115, 179-186.	0.7	26
87	Clearance of aquatic hyphomycete spores by a benthic suspension feeder. Limnology and Oceanography, 2004, 49, 2292-2296.	1.6	24
88	Adsorption and release of amino acids from epilithic biofilms in streams. Freshwater Biology, 1989, 22, 153-159.	1.2	23
89	Aquatic Hyphomycetes in Spruce Roots. Mycologia, 1992, 84, 580-584.	0.8	23
90	Phylogeny of Tetracladium based on 18S rDNA Czech Mycology, 2002, 53, 285-295.	0.2	23

#	Article	IF	CITATIONS
91	Seasonal variation of fungal biomass in the sediment of a salt marsh in New Brunswick. Microbial Ecology, 1993, 26, 37-45.	1.4	22
92	New and More Potent Antifungal Disulfides. Australian Journal of Chemistry, 2000, 53, 1.	0.5	22
93	Preliminary Insights into the Phylogeography of Six Aquatic Hyphomycete Species. PLoS ONE, 2012, 7, e45289.	1.1	22
94	Viability of aquatic hyphomycete conidia in foam. Canadian Journal of Botany, 1994, 72, 106-110.	1.2	21
95	Proteolytic Gut Enzymes in Tipula caloptera – Interaction with Phenolics. Aquatic Insects, 1999, 21, 11-18.	0.6	21
96	Processing of Eucalyptus viminalis leaves in Australian streams - importance of aquatic hyphomycetes and zoosporic fungi. Fundamental and Applied Limnology, 2012, 179, 305-319.	0.4	21
97	A decade's perspective on the impact of DNA sequencing on aquatic hyphomycete research. Fungal Biology Reviews, 2013, 27, 19-24.	1.9	21
98	Leaf litter microbial decomposition in salinized streams under intermittency. Science of the Total Environment, 2019, 653, 1204-1212.	3.9	21
99	On the Ecology of Ingoldian Fungi. BioScience, 1982, 32, 581-586.	2.2	20
100	Digestive enzymes of the saltmarsh periwinkleLittorina irrorata (Mollusca: Gastropoda). Oecologia, 1989, 80, 39-43.	0.9	20
101	Intraspecific Hyphal Interactions Among Aquatic Hyphomycetes. Mycologia, 1991, 83, 82-88.	0.8	20
102	Asking Probing Questions: Can Fluorescentin situ Hybridization Identify and Localise Aquatic Hyphomycetes on Leaf Litter?. International Review of Hydrobiology, 2001, 86, 429-438.	0.5	20
103	Tar-spot infection delays fungal colonization and decomposition of maple leaves. Freshwater Science, 2012, 31, 1088-1095.	0.9	20
104	Seasonal changes in microbial colonization of fresh and dried leaves. Archiv Für Hydrobiologie, 1993, 128, 1-12.	1.1	20
105	Palladium salicylaldimine complexes containing boronate esters. Transition Metal Chemistry, 2005, 30, 63-68.	0.7	19
106	Sporulation by Aquatic Hyphomycetes. , 2005, , 185-188.		19
107	Aquatic hyphomycete communities across a land-use gradient of Panamanian streams. Fundamental and Applied Limnology, 2010, 177, 209-221.	0.4	19
108	Incubation Temperature and Substrate Quality Modulate Sporulation by Aquatic Hyphomycetes. Microbial Ecology, 2013, 66, 30-39.	1.4	19

#	Article	IF	CITATIONS
109	Diversity of Conidia of Aquatic Hyphomycetes Assessed by Microscopy and by DGGE. Microbial Ecology, 2005, 49, 301-307.	1.4	18
110	qPCR quantification and genetic characterization of <i>Clostridium perfringens</i> populations in biosolids composted for 2 years. Journal of Applied Microbiology, 2010, 108, 571-581.	1.4	18
111	Leaching. , 2005, , 33-36.		18
112	Formation of phenol-protein complexes and their use by two stream invertebrates. Hydrobiologia, 1989, 173, 243-249.	1.0	17
113	Water-borne conidia of aquatic hyphomycetes: seasonal and yearly patterns in Catamaran Brook, New Brunswick, Canada. Canadian Journal of Botany, 2000, 78, 157-167.	1.2	17
114	Some new DNA barcodes of aquatic hyphomycete species. Mycoscience, 2015, 56, 102-108.	0.3	17
115	Are fungal strains from salinized streams adapted to salt-rich conditions?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180018.	1.8	17
116	Leaf Mass Loss Estimated by the Litter Bag Technique. , 2020, , 43-51.		17
117	Aquatic Hyphomycetes in Catamaran Brook: Colonization Dynamics, Seasonal Patterns, and Logging Effects. Mycologia, 2000, 92, 29.	0.8	16
118	Aquatic hyphomycetes in Catamaran Brook: colonization dynamics, seasonal patterns, and logging effects. Mycologia, 2000, 92, 29-41.	0.8	15
119	Late metal salicylaldimine complexes derived from 5-aminosalicylic acid — Molecular structure of a zwitterionic mono Schiff base zinc complex. Canadian Journal of Chemistry, 2005, 83, 1063-1070.	0.6	15
120	Fungal Endophytes in Submerged Roots. , 2006, , 179-190.		15
121	Effects of 4-n-nonylphenol on aquatic hyphomycetes. Science of the Total Environment, 2011, 409, 1651-1657.	3.9	15
122	Taxa-area relationship of aquatic fungi on deciduous leaves. PLoS ONE, 2017, 12, e0181545.	1.1	15
123	Inhibitors of Aquatic Hyphomycetes in Dead Conifer Needles. Mycologia, 1978, 70, 964.	0.8	14
124	Intraspecific Hyphal Interactions among Aquatic Hyphomycetes. Mycologia, 1991, 83, 82.	0.8	14
125	Sequencing DNA extracted from single conidia of aquatic hyphomycetes. Fungal Ecology, 2010, 3, 115-121.	0.7	14
126	Fungal Propagules and DNA in Feces of Two Detritus-Feeding Amphipods. Microbial Ecology, 2011, 61, 31-40.	1.4	14

8

#	Article	IF	CITATIONS
127	Novel Solidâ€ S tate Microbial Sensors Based on ZnO Nanorod Arrays. Advanced Functional Materials, 2018, 28, 1706309.	7.8	14
128	Analyzing aquatic fungal communities in Australia: impacts of sample incubation and geographic distance of streams Czech Mycology, 2011, 63, 113-132.	0.2	14
129	Breakdown of Introduced and Native Leaves in Two Indian Streams. International Review of Hydrobiology, 1996, 81, 529-539.	0.6	13
130	Quantitative real-time PCR as a promising tool for the detection and quantification of leaf-associated fungal species – A proof-of-concept using Alatospora pulchella. PLoS ONE, 2017, 12, e0174634.	1.1	13
131	Synthesis, reactivity, and antimicrobial properties of boron-containing 4-ethyl-3-thiosemicarbazide derivatives. Canadian Journal of Chemistry, 2018, 96, 906-911.	0.6	13
132	Heavy metals and thiol pool in three strains of Tetracladium marchalianum. Mycological Progress, 2005, 4, 185-194.	0.5	12
133	Effects of Pentachlorophenol on Aquatic Hyphomycetes. Mycologia, 1988, 80, 135-137.	0.8	11
134	Leaf Decomposition in a Mountain Stream in the Sultanate of Oman. International Review of Hydrobiology, 2009, 94, 16-28.	0.5	11
135	Reproduction of aquatic hyphomycetes at low concentrations of Ca ²⁺ , Zn ²⁺ , Cu ²⁺ , and Cd ²⁺ . Environmental Toxicology and Chemistry, 2011, 30, 2868-2873.	2.2	11
136	Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada. F1000Research, 2015, 4, 1378.	0.8	11
137	Hyphomycetes from Canadian streams. VI. Rare species in pure cultures Czech Mycology, 2001, 53, 1-28.	0.2	11
138	Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada. F1000Research, 2015, 4, 1378.	0.8	11
139	Colonization of rosin-coated slides by aquatic hyphomycetes. Canadian Journal of Botany, 1977, 55, 1163-1166.	1.2	10
140	Digestion of carbohydrates and protein by Gammarusmucronatus Say (Amphipoda). Journal of Experimental Marine Biology and Ecology, 1986, 104, 229-237.	0.7	10
141	Fungi in a heavy metal precipitating stream in the Mansfeld mining district, Germany. Science of the Total Environment, 2008, 389, 486-496.	3.9	10
142	A Primer for Statistical Analysis. , 2005, , 313-329.		10
143	<i>Fontanospora fusirama</i> sp. nov., a hyphomycete from live tree roots and from stream foam Czech Mycology, 1997, 50, 3-11.	0.2	10
144	Aquatic Hyphomycetes in Spruce Roots. Mycologia, 1992, 84, 580.	0.8	9

#	Article	IF	CITATIONS
145	Decomposition of dead twigs of Avicennia officinalis and Rhizophora mucronata in a mangrove in southwestern India. Botanica Marina, 2006, 49, .	0.6	9
146	Recent Developments in Stream Ecology and Their Relevance to Aquatic Mycology. Ecological Studies, 1992, , 16-37.	0.4	9
147	Palladium(II) Pyridinecarboxaldimine Complexes Derived from Unsaturated Amines. Transition Metal Chemistry, 2006, 31, 13-18.	0.7	8
148	Nutrient enrichment and flow regulation impair structure and function of a large river as revealed by aquatic hyphomycete species richness, biomass, and decomposition rates. Freshwater Science, 2016, 35, 1148-1163.	0.9	8
149	Meta-Analysis of Local Endovascular Therapy for Acute Ischemic Stroke. Journal of Vascular and Interventional Radiology, 2016, 27, 307-321.e2.	0.2	8
150	Synthesis, characterization, and antimicrobial activities of palladium Schiff base complexes derived from aminosalicylic acids. Transition Metal Chemistry, 2017, 42, 263-271.	0.7	8
151	Articulospora – Phylogeny vs morphology. Fungal Biology, 2018, 122, 965-976.	1.1	8
152	Effects of FPOM size and quality on aquatic heterotrophic bacteria. Limnologica, 2016, 59, 109-115.	0.7	7
153	Rapid characterization of aquatic hyphomycetes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Mycologia, 2019, 111, 177-189.	0.8	7
154	On Trophic Interactions between Microorganisms and Animals. American Naturalist, 1979, 114, 147-148.	1.0	7
155	New species of Filosporella, Pachycladina and Pleuropedium from Canadian streams. Mycological Research, 1998, 102, 750-754.	2.5	6
156	Hyphomycetes from Canadian streams. III. Arcispora bisagittaria anam. gen. and sp. nov Mycologia, 1998, 90, 531-536.	0.8	6
157	Synthesis, characterization and antifungal studies of arylspiroborates derived from 4-nitrocatechol. Journal of Molecular Structure, 2011, 1002, 24-27.	1.8	6
158	Aquatic fungal ecology. Fungal Ecology, 2016, 19, 1-4.	0.7	6
159	Salt Modulates Plant Litter Decomposition in Stream Ecosystems. , 2021, , 323-345.		6
160	Leaching. , 2020, , 37-41.		6
161	Chemical and microbial diagenesis of humic matter in freshwaters. Water, Air, and Soil Pollution, 1989, 46, 205-211.	1.1	6
162	Effects of Pentachlorophenol on Aquatic Hyphomycetes. Mycologia, 1988, 80, 135.	0.8	5

#	Article	IF	CITATIONS
163	Hyphomycetes from Canadian Streams. III. Arcispora bisagittaria Anam. Gen. and sp. nov Mycologia, 1998, 90, 531.	0.8	5
164	Pellet size affects mycelial ergosterol content in aquatic hyphomycetes. Mycologia, 2004, 96, 388-392.	0.8	5
165	Synthesis, characterization and antifungal testing of 3,4-dihydropyrimidin-2(1H)-(thio)ones containing boronic acids and boronate esters. Open Chemistry, 2008, 6, 562-568.	1.0	5
166	Sporulation by Aquatic Hyphomycetes. , 2020, , 241-245.		5
167	Pellet Size Affects Mycelial Ergosterol Content in Aquatic Hyphomycetes. Mycologia, 2004, 96, 388.	0.8	4
168	Molecular Approaches to Estimate Fungal Diversity. II. Denaturing Gradient Gel Electrophoresis (DGGE). , 2005, , 177-183.		4
169	Fungal richness does not buffer the effects of streams salinization on litter decomposition. Annales De Limnologie, 2021, 57, 5.	0.6	4
170	Molecular Approaches to Estimate Fungal Diversity. I. Terminal Restriction Fragment Length Polymorphism (T-RFLP). , 2005, , 169-176.		4
171	Salicylaldimine dimers derived from 2-H2NC6H4Bpin (pinâ€,=â€,1,2-O2C2Me4). Canadian Journal of Chemistry, 2005, 83, 1158-1163.	0.6	3
172	Title is missing!. International Review of Hydrobiology, 2001, 86, 429-438.	0.5	3
173	Decomposition: how limnologists were led astray by soil ecologists. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1998, 26, 1813-1813.	0.1	2
174	Synthesis of cis-Isoquinolonic Acids Containing Boronate Esters. Synthesis, 2005, 2005, 2739-2743.	1.2	2
175	Synthesis and molecular structure of 4,4,5,5-tetramethyl-2-(1-(phenylsulfonyl)propan-2-yl)-1,3,2-dioxaborolane. Journal of Chemical Crystallography, 2006, 36, 661-665.	0.5	2
176	Metabolism and ecology of the water mould, Leptomitus lacteus (Oomycota), blooming in winter in a Nova Scotia stream. Fundamental and Applied Limnology, 2009, 175, 171-180.	0.4	2
177	Synthesis, characterization and antimicrobial properties of lipophilic palladium complexes bearing iminopyridine ligands. Transition Metal Chemistry, 2015, 40, 813-819.	0.7	2
178	Synthesis and antimicrobial properties of lipophilic Schiff base copper and palladium complexes. Transition Metal Chemistry, 2015, 40, 605-612.	0.7	1
179	Decomposition and fungal colonization of Fontinalis antipyretica var. gracilis (Bryophyta). Fundamental and Applied Limnology, 2000, 149, 259-269.	0.4	1
180	Denaturing Gradient Gel Electrophoresis (DGGE) to Estimate Fungal Diversity. , 2020, , 319-326.		1

11

#	Article	IF	CITATIONS
181	Selfishness and Cooperation. American Biology Teacher, 1987, 49, 31-33.	0.1	0
182	A long-term study of fungal diversity in Catamaran Brook, a salmon stream in New Brunswick, Canada. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 3238-3238.	0.1	0
183	Terminal Restriction Fragment Length Polymorphism (T-RFLP) to Estimate Fungal Diversity. , 2020, , 311-318.		Ο
184	Aquatic hyphomycete spores: What do we know, where do we go from here?. , 2022, , 1-20.		0