Ji C Bihl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8331994/publications.pdf Version: 2024-02-01

LLC RIHL

#	Article	IF	CITATIONS
1	Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through miR-21/VEGF signal. Oncotarget, 2017, 8, 36137-36148.	1.8	137
2	The Role of Circulating Platelets Microparticles and Platelet Parameters in Acute Ischemic Stroke Patients. Journal of Stroke and Cerebrovascular Diseases, 2015, 24, 2313-2320.	1.6	85
3	Exosome-Mediated Transfer of ACE2 (Angiotensin-Converting Enzyme 2) from Endothelial Progenitor Cells Promotes Survival and Function of Endothelial Cell. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-11.	4.0	84
4	Microvascular endothelial cells-derived microvesicles imply in ischemic stroke by modulating astrocyte and blood brain barrier function and cerebral blood flow. Molecular Brain, 2016, 9, 63.	2.6	80
5	Inhibition of Ferroptosis Alleviates Early Brain Injury After Subarachnoid Hemorrhage In Vitro and In Vivo via Reduction of Lipid Peroxidation. Cellular and Molecular Neurobiology, 2021, 41, 263-278.	3.3	77
6	Moderate Exercise Enhances Endothelial Progenitor Cell Exosomes Release and Function. Medicine and Science in Sports and Exercise, 2018, 50, 2024-2032.	0.4	75
7	miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Research and Therapy, 2020, 11, 260.	5.5	75
8	Loading MiR-210 in Endothelial Progenitor Cells Derived Exosomes Boosts Their Beneficial Effects on Hypoxia/Reoxygeneation-Injured Human Endothelial Cells via Protecting Mitochondrial Function. Cellular Physiology and Biochemistry, 2018, 46, 664-675.	1.6	74
9	Exosomes from miRNAâ€126â€modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke. CNS Neuroscience and Therapeutics, 2020, 26, 1255-1265.	3.9	74
10	Angiotensin-(1–7) counteracts angiotensin II-induced dysfunction in cerebral endothelial cells via modulating Nox2/ROS and PI3K/NO pathways. Experimental Cell Research, 2015, 336, 58-65.	2.6	70
11	Activation of the ACE2/Ang-(1–7)/Mas pathway reduces oxygen–glucose deprivation-induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction. Neuroscience, 2014, 273, 39-51.	2.3	62
12	ACE2â€EPCâ€EXs protect ageing ECs against hypoxia/reoxygenationâ€induced injury through the miRâ€18a/Nox2/ROS pathway. Journal of Cellular and Molecular Medicine, 2018, 22, 1873-1882.	3.6	60
13	miR-137 boosts the neuroprotective effect of endothelial progenitor cell-derived exosomes in oxyhemoglobin-treated SH-SY5Y cells partially via COX2/PGE2 pathway. Stem Cell Research and Therapy, 2020, 11, 330.	5.5	60
14	The effects of microvesicles on endothelial progenitor cells are compromised in type 2 diabetic patients via downregulation of the miR-126/VEGFR2 pathway. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E828-E837.	3.5	57
15	Angiotensin-(1–7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: Role of the NFĐºB inflammatory pathway. Vascular Pharmacology, 2015, 73, 115-123.	2.1	54
16	The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells. Stem Cells International, 2016, 2016, 1-12.	2.5	49
17	Endothelial progenitor cells and neural progenitor cells synergistically protect cerebral endothelial cells from Hypoxia/reoxygenation-induced injury via activating the PI3K/Akt pathway. Molecular Brain, 2016, 9, 12.	2.6	49
18	Hematopoietic stem cell-derived exosomes promote hematopoietic differentiation of mouse embryonic stem cells in vitro via inhibiting the miR126/Notch1 pathway. Acta Pharmacologica Sinica, 2018, 39, 552-560.	6.1	30

Ji C Bihl

#	Article	IF	CITATIONS
19	Implication of MicroRNA503 in Brain Endothelial Cell Function and Ischemic Stroke. Translational Stroke Research, 2020, 11, 1148-1164.	4.2	30
20	Keratinocyte-derived microvesicle particles mediate ultraviolet B radiation–induced systemic immunosuppression. Journal of Clinical Investigation, 2021, 131, .	8.2	29
21	NPC-EXs Alleviate Endothelial Oxidative Stress and Dysfunction through the miR-210 Downstream Nox2 and VEGFR2 Pathways. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-11.	4.0	28
22	Underlying Mechanisms and Potential Therapeutic Molecular Targets in Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage. Current Neuropharmacology, 2020, 18, 1168-1179.	2.9	28
23	<scp>UVB</scp> Generates Microvesicle Particle Release in Part Due to Plateletâ€activating Factor Signaling. Photochemistry and Photobiology, 2016, 92, 503-506.	2.5	25
24	Analyses of Endothelial Cells and Endothelial Progenitor Cells Released Microvesicles by Using Microbead and Q-dot Based Nanoparticle Tracking Analysis. Scientific Reports, 2016, 6, 24679.	3.3	23
25	UVBâ€generated Microvesicle Particles: A Novel Pathway by Which a Skinâ€specific Stimulus Could Exert Systemic Effects. Photochemistry and Photobiology, 2017, 93, 937-942.	2.5	21
26	Inhibition of mTOR Alleviates Early Brain Injury After Subarachnoid Hemorrhage Via Relieving Excessive Mitochondrial Fission. Cellular and Molecular Neurobiology, 2020, 40, 629-642.	3.3	20
27	Thermal Burn Injury Generates Bioactive Microvesicles: Evidence for a Novel Transport Mechanism for the Lipid Mediator Platelet-Activating Factor (PAF) That Involves Subcellular Particles and the PAF Receptor. Journal of Immunology, 2020, 205, 193-201.	0.8	17
28	C6-ceramide treatment inhibits the proangiogenic activity of multiple myeloma exosomes via the miR-29b/Akt pathway. Journal of Translational Medicine, 2020, 18, 298.	4.4	15
29	Exercise Improves Endothelial Function Associated with Alleviated Inflammation and Oxidative Stress of Perivascular Adipose Tissue in Type 2 Diabetic Mice. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	4.0	15
30	Cellular Membrane Microparticles: Potential Targets of Combinational Therapy for Vascular Disease. Current Vascular Pharmacology, 2015, 13, 449-458.	1.7	14
31	EPC-EXs improve astrocyte survival and oxidative stress through different uptaking pathways in diabetic hypoxia condition. Stem Cell Research and Therapy, 2022, 13, 91.	5.5	14
32	Microvesiclesâ€mediated communication between endothelial cells modulates, endothelial survival, and angiogenic function via transferring of miRâ€125aâ€5p. Journal of Cellular Biochemistry, 2019, 120, 3160-3172.	2.6	12
33	The promise of exosome applications in treating central nervous system diseases. CNS Neuroscience and Therapeutics, 2021, 27, 1437-1445.	3.9	7
34	Ultraviolet B Irradiation Alters the Level and miR Contents of Exosomes Released by Keratinocytes in Diabetic Condition. Photochemistry and Photobiology, 2022, 98, 1122-1130.	2.5	7
35	The Preliminary Study of Effects of Tolfenamic Acid on Cell Proliferation, Cell Apoptosis, and Intracellular Collagen Deposition in Keloid Fibroblasts <i>In Vitro</i> . Dermatology Research and Practice, 2014, 2014, 1-8.	0.8	5
36	Role of Exosomes in Mediating the Cross-Talk Between Adipose Tissue and the Brain. NeuroMolecular Medicine, 2022, 24, 57-61.	3.4	3

Јі С Вінг

#	Article	IF	CITATIONS
37	Therapeutic effects of exosomes from angiotensin-converting enzyme 2 -overexpressed endothelial progenitor cells on intracerebral hemorrhagic stroke. Brain Hemorrhages, 2021, 2, 57-62.	1.0	2
38	Enrichment of miR-126 Boosts the Therapeutic Effects of Endothelial Progenitor Cells Derived Exosomes on Ischemic Stroke in Diabetic Mice. Diabetes, 2018, 67, .	0.6	2
39	Exosome and MiRNA in Stroke. Springer Series in Translational Stroke Research, 2018, , 325-361.	0.1	1
40	Abstract P195: Overexpression of ACE2 Boosts the Therapeutic Effects of Endothelial Progenitor Cells Derived Exosomes on Hemorrhagic Stroke. Hypertension, 2019, 74, .	2.7	1
41	Abstract TP134: Exercise Enhanced the Function of Endothelial Progenitor Cell-derived Exosomes on Protecting Neurons Against Hypoxia/reoxygenation Insult. Stroke, 2019, 50, .	2.0	0
42	46-LB: Exercise Improves Endothelial Function Associated with Alleviated Inflammation and Oxidative Stress of Perivascular Adipose Tissue in Type 2 Diabetic Mice. Diabetes, 2020, 69, 46-LB.	0.6	0