
## Jamie A O'rourke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8331852/publications.pdf Version: 2024-02-01



AMIE A O'DOLIDKE

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | An RNA-Seq Transcriptome Analysis of Orthophosphate-Deficient White Lupin Reveals Novel Insights<br>into Phosphorus Acclimation in Plants  Â. Plant Physiology, 2013, 161, 705-724.               | 4.8 | 184       |
| 2  | An RNA-Seq based gene expression atlas of the common bean. BMC Genomics, 2014, 15, 866.                                                                                                           | 2.8 | 142       |
| 3  | Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines. BMC Genomics, 2007,<br>8, 476.                                                                                   | 2.8 | 65        |
| 4  | Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway. Functional Plant Biology, 2013, 40, 1029.                      | 2.1 | 57        |
| 5  | Integrating microarray analysis and the soybean genome to understand the soybeans iron deficiency response. BMC Genomics, 2009, 10, 376.                                                          | 2.8 | 56        |
| 6  | The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genomics, 2015, 16, 502.              | 2.8 | 54        |
| 7  | Legume genomics: understanding biology through DNA and RNA sequencing. Annals of Botany, 2014, 113, 1107-1120.                                                                                    | 2.9 | 52        |
| 8  | Comprehensive mapping of abiotic stress inputs into the soybean circadian clock. Proceedings of the<br>National Academy of Sciences of the United States of America, 2019, 116, 23840-23849.      | 7.1 | 49        |
| 9  | An Integrative Approach to Genomic Introgression Mapping  Â. Plant Physiology, 2010, 154, 3-12.                                                                                                   | 4.8 | 45        |
| 10 | Soybean Root System Architecture Trait Study through Genotypic, Phenotypic, and Shape-Based<br>Clusters. Plant Phenomics, 2020, 2020, 1925495.                                                    | 5.9 | 40        |
| 11 | Fast neutron-induced structural rearrangements at a soybean NAP1 locus result in gnarled trichomes. Theoretical and Applied Genetics, 2016, 129, 1725-1738.                                       | 3.6 | 35        |
| 12 | Replication protein <scp>A</scp> subunit 3 and the iron efficiency response in soybean. Plant, Cell and Environment, 2014, 37, 213-234.                                                           | 5.7 | 34        |
| 13 | Deconstructing the genetic architecture of iron deficiency chlorosis in soybean using genome-wide approaches. BMC Plant Biology, 2020, 20, 42.                                                    | 3.6 | 32        |
| 14 | Recovering from iron deficiency chlorosis in near-isogenic soybeans: A microarray study. Plant<br>Physiology and Biochemistry, 2007, 45, 287-292.                                                 | 5.8 | 22        |
| 15 | A re-sequencing based assessment of genomic heterogeneity and fast neutron-induced deletions in a common bean cultivar. Frontiers in Plant Science, 2013, 4, 210.                                 | 3.6 | 18        |
| 16 | Dynamic gene expression changes in response to micronutrient, macronutrient, and multiple stress exposures in soybean. Functional and Integrative Genomics, 2020, 20, 321-341.                    | 3.5 | 18        |
| 17 | Characterizing short and long term iron stress responses in iron deficiency tolerant and susceptible soybean (Glycine max L. Merr.). Plant Stress, 2021, 2, 100012.                               | 5.5 | 18        |
| 18 | Transgene silencing of sucrose synthase in alfalfa (Medicago sativa L.) stem vascular tissue suggests a<br>role for invertase in cell wall cellulose synthesis. BMC Plant Biology, 2015, 15, 283. | 3.6 | 17        |

JAMIE A O'ROURKE

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Virusâ€Induced Gene Silencing and Transient Gene Expression in Soybean <i>(Glycine max)</i> Using<br><i>Bean Pod Mottle Virus</i> Infectious Clones. Current Protocols in Plant Biology, 2016, 1, 263-283. | 2.8 | 13        |
| 20 | Leveraging RNA-Seq to Characterize Resistance to Brown Stem Rot and the <i>Rbs3</i> Locus in Soybean. Molecular Plant-Microbe Interactions, 2018, 31, 1083-1094.                                           | 2.6 | 12        |
| 21 | Examining Short-Term Responses to a Long-Term Problem: RNA-Seq Analyses of Iron Deficiency<br>Chlorosis Tolerant Soybean. International Journal of Molecular Sciences, 2020, 21, 3591.                     | 4.1 | 9         |
| 22 | Gene Expression Responses to Sequential Nutrient Deficiency Stresses in Soybean. International<br>Journal of Molecular Sciences, 2021, 22, 1252.                                                           | 4.1 | 6         |
| 23 | Comparing Early Transcriptomic Responses of 18 Soybean (Glycine max) Genotypes to Iron Stress.<br>International Journal of Molecular Sciences, 2021, 22, 11643.                                            | 4.1 | 4         |
| 24 | Mining Fiskeby III and Mandarin (Ottawa) Expression Profiles to Understand Iron Stress Tolerant<br>Responses in Soybean. International Journal of Molecular Sciences, 2021, 22, 11032.                     | 4.1 | 3         |