Armelle Baeza-Squiban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8331847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating the Toxicity of Airborne Particulate Matter and Nanoparticles by Measuring Oxidative Stress Potential—A Workshop Report and Consensus Statement. Inhalation Toxicology, 2008, 20, 75-99.	1.6	482
2	Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount. Toxicology, 2009, 260, 142-149.	4.2	294
3	Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environmental Health Perspectives, 2017, 125, 106002.	6.0	274
4	Organic Compounds from Diesel Exhaust Particles Elicit a Proinflammatory Response in Human Airway Epithelial Cells and Induce Cytochrome p450 1A1 Expression. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 515-521.	2.9	254
5	Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L671-L679.	2.9	247
6	Nanoparticles: molecular targets and cell signalling. Archives of Toxicology, 2011, 85, 733-741.	4.2	202
7	Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Particle and Fibre Toxicology, 2010, 7, 10.	6.2	198
8	Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Particle and Fibre Toxicology, 2013, 10, 2.	6.2	172
9	Diesel exhaust particles are taken up by human airway epithelial cells in vitro and alter cytokine production. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L604-L613.	2.9	136
10	Interactions between Magnetic Nanowires and Living Cells: Uptake, Toxicity, and Degradation. ACS Nano, 2011, 5, 5354-5364.	14.6	132
11	An in vitroassessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrology, 2013, 14, 96.	1.8	105
12	Physicochemical Characteristics and Biological Activities of Seasonal Atmospheric Particulate Matter Sampling in Two Locations of Paris. Environmental Science & Technology, 2004, 38, 5985-5992.	10.0	104
13	Biological effects of atmospheric particles on human bronchial epithelial cells. Comparison with diesel exhaust particles. Toxicology in Vitro, 2003, 17, 567-573.	2.4	98
14	Fine Particulate Matter Induces Amphiregulin Secretion by Bronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2004, 30, 421-427.	2.9	94
15	Size-partitioning of an urban aerosol to identify particle determinants involved in the proinflammatory response induced in airway epithelial cells. Particle and Fibre Toxicology, 2009, 6, 10.	6.2	89
16	In vitro Assessment of the Pulmonary Toxicity and Gastric Availability of Lead-Rich Particles from a Lead Recycling Plant. Environmental Science & Technology, 2011, 45, 7888-7895.	10.0	86
17	Environmental and health impacts of fine and ultrafine metallic particles: Assessment of threat scores. Environmental Research, 2014, 133, 185-194.	7.5	86
18	Airborne particles evoke an inflammatory response in human airway epithelium. Activation of transcription factors. Cell Biology and Toxicology, 1999, 15, 375-380.	5.3	83

#	Article	IF	CITATIONS
19	Mechanisms of GM-CSF increase by diesel exhaust particles in human airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L25-L32.	2.9	83
20	Carbon black and titanium dioxide nanoparticles induce pro-inflammatory responses in bronchial epithelial cells: Need for multiparametric evaluation due to adsorption artifacts. Inhalation Toxicology, 2009, 21, 115-122.	1.6	77
21	Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor. Particle and Fibre Toxicology, 2010, 7, 18.	6.2	75
22	Inducible expression of beta defensins by human respiratory epithelial cells exposed to Aspergillus fumigatusorganisms. BMC Microbiology, 2009, 9, 33.	3.3	67
23	Role of Paris PM2.5 components in the pro-inflammatory response induced in airway epithelial cells. Toxicology, 2009, 261, 126-135.	4.2	57
24	Acute exposure to silica nanoparticles enhances mortality and increases lung permeability in a mouse model of Pseudomonas aeruginosa pneumonia. Particle and Fibre Toxicology, 2015, 12, 1.	6.2	57
25	Efficient Protection of Human Bronchial Epithelial Cells against Sulfur and Nitrogen Mustard Cytotoxicity Using Drug Combinations. Toxicological Sciences, 2000, 58, 153-160.	3.1	55
26	Analytical methods to assess the oxidative potential of nanoparticles: a review. Environmental Science: Nano, 2017, 4, 1920-1934.	4.3	53
27	Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation. Particle and Fibre Toxicology, 2013, 10, 10.	6.2	52
28	Impact of serum as a dispersion agent for in vitro and in vivo toxicological assessments of TiO2 nanoparticles. Archives of Toxicology, 2017, 91, 353-363.	4.2	51
29	Human airway epithelial cells in culture for studying the molecular mechanisms of the inflammatory response triggered by diesel exhaust particles. Cell Biology and Toxicology, 2002, 18, 315-320.	5.3	50
30	Development of a repeated exposure protocol of human bronchial epithelium in vitro to study the long-term effects of atmospheric particles. Toxicology in Vitro, 2013, 27, 533-542.	2.4	50
31	Expression and role of EGFR ligands induced in airway cells by PM2.5 and its components. European Respiratory Journal, 2007, 30, 1064-1073.	6.7	48
32	Fine PM induce airway MUC5AC expression through the autocrine effect of amphiregulin. Archives of Toxicology, 2012, 86, 1851-1859.	4.2	44
33	Carbon black and titanium dioxide nanoparticles induce distinct molecular mechanisms of toxicity. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 641-652.	6.1	44
34	Intracellular Signal Modulation by Nanomaterials. Advances in Experimental Medicine and Biology, 2014, 811, 111-134.	1.6	41
35	A comparative transmission electron microscopy study of titanium dioxide and carbon black nanoparticles uptake in human lung epithelial and fibroblast cell lines. Toxicology in Vitro, 2012, 26, 57-66.	2.4	38
36	<i>In Situ</i> Analysis of Weakly Bound Proteins Reveals Molecular Basis of Soft Corona Formation. ACS Nano, 2020, 14, 9073-9088.	14.6	38

#	Article	IF	CITATIONS
37	Internalization of SiO2 nanoparticles by alveolar macrophages and lung epithelial cells and its modulation by the lung surfactant substitute CurosurfA®. Environmental Science and Pollution Research, 2013, 20, 2761-2770.	5.3	36
38	Development of an in vitro model of human bronchial epithelial barrier to study nanoparticle translocation. Toxicology in Vitro, 2015, 29, 51-58.	2.4	35
39	Effects of PM2.5 components in the release of amphiregulin by human airway epithelial cells. Toxicology Letters, 2007, 168, 155-164.	0.8	34
40	Role of size and composition of traffic and agricultural aerosols in the molecular responses triggered in airway epithelial cells. Inhalation Toxicology, 2011, 23, 627-640.	1.6	33
41	Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier. Nanoscale, 2015, 7, 4529-4544.	5.6	33
42	Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles. Archives of Toxicology, 2017, 91, 163-177.	4.2	32
43	Effect of mineral particles containing iron on primary cultures of rabbit tracheal epithelial cells: possible implication of oxidative stress Environmental Health Perspectives, 1993, 101, 436-442.	6.0	31
44	Progress in outgrowth culture from rabbit tracheal explants: Balance between proliferation and maintenance of differentiated state in epithelial cells. In Vitro Cellular & Developmental Biology, 1991, 27, 453-460.	1.0	30
45	Particle size distributions of currently used pesticides in a rural atmosphere of France. Atmospheric Environment, 2013, 81, 32-38.	4.1	29
46	Lung Antioxidant Depletion: A Predictive Indicator of Cellular Stress Induced by Ambient Fine Particles. Environmental Science & Technology, 2020, 54, 2360-2369.	10.0	29
47	Extracellular matrix-dependent differentiation of rabbit tracheal epithelial cells in primary culture. In Vitro Cellular and Developmental Biology - Animal, 1994, 30, 56-67.	1.5	28
48	Supported pulmonary surfactant bilayers on silica nanoparticles: formulation, stability and impact on lung epithelial cells. Nanoscale, 2017, 9, 14967-14978.	5.6	28
49	Mechanisms of Uptake and Translocation of Nanomaterials in the Lung. Advances in Experimental Medicine and Biology, 2018, 1048, 21-36.	1.6	28
50	Fine urban atmospheric particulate matter modulates inflammatory gene and protein expression in human bronchial epithelial cells. Frontiers in Bioscience - Landmark, 2007, 12, 771.	3.0	28
51	Protection from Cytotoxic Effects Induced by the Nitrogen Mustard Mechlorethamine on Human Bronchial Epithelial Cells in Vitro. Toxicological Sciences, 2000, 54, 212-221.	3.1	27
52	Proinflammatory effect of fine and ultrafine particulate matter using size-resolved urban aerosols from Paris. Chemosphere, 2008, 72, 1340-1346.	8.2	27
53	Diesel Exhaust Particles Increase NF-κB DNA Binding Activity and c-FOS Proto-oncogene Expression in Human Bronchial Epithelial Cells. Toxicology in Vitro, 1999, 13, 817-822.	2.4	26
54	Involvement of oxidative stress and calcium signaling in airborne particulate matter - induced damages in human pulmonary artery endothelial cells. Toxicology in Vitro, 2017, 45, 340-350.	2.4	26

Armelle Baeza-Squiban

#	Article	IF	CITATIONS
55	Pulmonary surfactant inhibition of nanoparticle uptake by alveolar epithelial cells. Scientific Reports, 2020, 10, 19436.	3.3	26
56	Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants. Toxicology and Applied Pharmacology, 2009, 236, 366-371.	2.8	24
57	Brake wear (nano)particle characterization and toxicity on airway epithelial cells in vitro. Environmental Science: Nano, 2018, 5, 1036-1044.	4.3	22
58	Alveolar mimics with periodic strain and its effect on the cell layer formation. Biotechnology and Bioengineering, 2020, 117, 2827-2841.	3.3	21
59	Similar cellular effects induced by diesel exhaust particles from a representative diesel vehicle recovered from filters and Standard Reference Material 1650. Toxicology in Vitro, 2001, 15, 379-385.	2.4	20
60	Physico-chemical characterization of urban aerosols from specific combustion sources in West Africa at Abidjan in CA´te d'Ivoire and Cotonou in Benin in the frame of the DACCIWA program. Atmospheric Chemistry and Physics, 2020, 20, 5327-5354.	4.9	17
61	Effects of deltamethrin and its commercial formulation DECIS on different cell types in vitro: Cytotoxicity, cellular binding, and intracellular localization. Pesticide Biochemistry and Physiology, 1987, 28, 103-113.	3.6	16
62	Activation of Transcription Factors by Diesel Exhaust Particles in Human Bronchial Epithelial Cells in Vitro. Inhalation Toxicology, 2000, 12, 359-364.	1.6	14
63	Use of Fluorescent Probes to Assess the Early Sulfhydryl Depletion and Oxidative Stress Induced by Mechlorethamine in Human Bronchial Epithelial Cells. Toxicology in Vitro, 1999, 13, 765-771.	2.4	13
64	Tracheal epithelium in culture: a model for toxicity testing of inhaled molecules. Cell Biology and Toxicology, 1992, 8, 141-150.	5.3	12
65	Early cytotoxic effects of mechlorethamine, a nitrogen mustard, on mammalian airway epithelium. Toxicology in Vitro, 1997, 11, 695-702.	2.4	12
66	Demonstration of the excretion byDunaliella bioculata of esterases implicated in the metabolism of deltamethrin, a pyrethroid insecticide. Bulletin of Environmental Contamination and Toxicology, 1990, 45, 39-45.	2.7	10
67	Responses of the rabbit tracheal epithelium in vitro to H2O2-induced oxidative stress. Toxicology in Vitro, 2000, 14, 159-167.	2.4	10
68	The iron component of particulate matter is antiapoptotic: A clue to the development of lung cancer after exposure to atmospheric pollutants?. Biochimie, 2015, 118, 195-206.	2.6	10
69	Co-culture of type I and type II pneumocytes as a model of alveolar epithelium. PLoS ONE, 2021, 16, e0248798.	2.5	7
70	Metabolism of deltamethrin in two cell types in vitro. Pesticide Biochemistry and Physiology, 1988, 32, 253-261.	3.6	6
71	Cultured airway epithelium responses to mineral particles: role of the oxidative stress. Toxicology Letters, 1996, 88, 39-44.	0.8	6
72	Nanoparticles used in medical applications for the lung: hopes for nanomedicine and fears for nanotoxicity. Journal of Physics: Conference Series, 2011, 304, 012031.	0.4	6

#	Article	IF	CITATIONS
73	Autocrine effect of EGFR ligands on the pro-inflammatory response induced by PM2.5 exposure in human bronchial epithelial cells. Archives of Toxicology, 2012, 86, 1537-1546.	4.2	6
74	Cellular Mechanisms of Nanoparticle Toxicity. , 2016, , 498-505.		6
75	Differential effects of several retinoid receptor-selective ligands on squamous differentiation and apoptosis in airway epithelial cells. Cell and Tissue Research, 2000, 300, 67-81.	2.9	5
76	Defense and repair mechanisms in the airway epithelium exposed to oxidative stress Effects of analogues of retinoic acid. Toxicology Letters, 1998, 96-97, 245-251.	0.8	4
77	Experimental Models in Nanotoxicology. , 2011, , 63-86.		4
78	Translocation of SiO2-NPs across in vitro human bronchial epithelial monolayer. Journal of Physics: Conference Series, 2013, 429, 012022.	0.4	4
79	Cytotoxicity, accumulation, and metabolism of deltamethrin, a pyrethroid insecticide, in Drosophila melanogaster cells. Pesticide Biochemistry and Physiology, 1989, 33, 201-212.	3.6	3
80	Toxicité respiratoire des particules Diesel : les mécanismes cellulaires et moléculaires Medecine/Sciences, 2001, 17, 596.	0.2	3
81	Particle-Associated Organics and Proinflammatory Signaling. , 2006, , 211-225.		3
82	Fate and Health Impact of Inorganic Manufactured Nanoparticles. , 2013, , 245-267.		2
83	Involvement of the Oxidative Stress in the Toxicity of Iron-Containing Particles on Tracheal Epithelium in Primary Culture. , 1994, , 39-51.		2
84	The Secretome of Human Bronchial Epithelial Cells Exposed to Fine Atmospheric Particles Induces Fibroblast Proliferation. Challenges, 2013, 4, 188-200.	1.7	1
85	17 Role of the oxidative stress in the responses of the cultured tracheal epithelium to mineral particles. Cell Biology and Toxicology, 1996, 12, 375-375.	5.3	Ο
86	Finest ambient particles induce a pro-inflammatory response and mucus overexpression in airway epithelial cells. Toxicology Letters, 2011, 205, S152.	0.8	0
87	Cellular Mechanisms of Nanoparticle Toxicity. , 2015, , 1-9.		Ο