
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8331724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurochemistry of sleep. , 2023, , 146-159.		0
2	Deprenyl reduces inflammation during acute SIV infection. IScience, 2022, 25, 104207.	1.9	7
3	Effectiveness and Relationship between Biased and Unbiased Measures of Dopamine Release and Clearance. ACS Chemical Neuroscience, 2022, 13, 1534-1548.	1.7	6
4	Incubation of cocaine craving coincides with changes in dopamine terminal neurotransmission. Addiction Neuroscience, 2022, 3, 100029.	0.4	6
5	Study of the release of endogenous amines in <i>Drosophila</i> brain in vivo in response to stimuli linked to aversive olfactory conditioning. Journal of Neurochemistry, 2021, 156, 337-351.	2.1	3
6	Dopamine transporter function fluctuates across sleep/wake state: potential impact for addiction. Neuropsychopharmacology, 2021, 46, 699-708.	2.8	26
7	Chronic modafinil administration to preadolescent rats impairs social play behavior and dopaminergic system. Neuropharmacology, 2021, 183, 108404.	2.0	4
8	Spinal Dopaminergic Mechanisms Regulating the Micturition Reflex in Male Rats with Complete Spinal Cord Injury. Journal of Neurotrauma, 2021, 38, 803-817.	1.7	12
9	D-amphetamine maintenance treatment goes a long way: lasting therapeutic effects on cocaine behavioral effects and cocaine potency at the dopamine transporter. Neuropsychopharmacology, 2021, 46, 275-276.	2.8	0
10	Individual differences in dopamine uptake in the dorsomedial striatum prior to cocaine exposure predict motivation for cocaine in male rats. Neuropsychopharmacology, 2021, 46, 1757-1767.	2.8	5
11	Striatal low-threshold spiking interneurons locally gate dopamine. Current Biology, 2021, 31, 4139-4147.e6.	1.8	10
12	Restoring lost nigrostriatal fibers in Parkinson's disease based on clinically-inspired design criteria. Brain Research Bulletin, 2021, 175, 168-185.	1.4	14
13	Hypocretin receptor 1 involvement in cocaine-associated behavior: Therapeutic potential and novel mechanistic insights. Brain Research, 2020, 1731, 145894.	1.1	19
14	Accelerated development of cocaine-associated dopamine transients and cocaine use vulnerability following traumatic stress. Neuropsychopharmacology, 2020, 45, 472-481.	2.8	13
15	Chemogenetic Manipulation of Dopamine Neurons Dictates Cocaine Potency at Distal Dopamine Transporters. Journal of Neuroscience, 2020, 40, 8767-8779.	1.7	12
16	Pharmacological Characterization of 4-Methylthioamphetamine Derivatives. Molecules, 2020, 25, 5310.	1.7	2
17	Identification of a Novel Allosteric Modulator of the Human Dopamine Transporter. ACS Chemical Neuroscience, 2019, 10, 3718-3730.	1.7	22
18	Chemogenetic Manipulations of Ventral Tegmental Area Dopamine Neurons Reveal Multifaceted Roles in Cocaine Abuse. Journal of Neuroscience, 2019, 39, 503-518.	1.7	72

#	Article	IF	CITATIONS
19	Selective activation of Dopamine D3 receptors and norepinephrine transporter blockade enhances sustained attention. Neuropharmacology, 2019, 148, 178-188.	2.0	13
20	Local GABA _A Receptor-Mediated Suppression of Dopamine Release within the Nucleus Accumbens. ACS Chemical Neuroscience, 2019, 10, 1978-1985.	1.7	31
21	Suvorexant, an orexin/hypocretin receptor antagonist, attenuates motivational and hedonic properties of cocaine. Addiction Biology, 2018, 23, 247-255.	1.4	59
22	Diazepam Concurrently Increases the Frequency and Decreases the Amplitude of Transient Dopamine Release Events in the Nucleus Accumbens. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 145-155.	1.3	25
23	Hypocretin receptor 1 knockdown in the ventral tegmental area attenuates mesolimbic dopamine signaling and reduces motivation for cocaine. Addiction Biology, 2018, 23, 1032-1045.	1.4	26
24	F266. Susceptibility to Traumatic Stress Accelerates the Development of Cocaine-Associated Dopamine Transients and Drives Cocaine Use Vulnerability. Biological Psychiatry, 2018, 83, S342.	0.7	0
25	The histone demethylase KDM6B in the medial prefrontal cortex epigenetically regulates cocaine reward memory. Neuropharmacology, 2018, 141, 113-125.	2.0	32
26	Tissue engineered nigrostriatal pathway for treatment of Parkinson's disease. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1702-1716.	1.3	48
27	Pharmacologically increasing microtubule acetylation corrects stressâ€exacerbated effects of organophosphates on neurons. Traffic, 2017, 18, 433-441.	1.3	34
28	Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats. International Journal of Neuropsychopharmacology, 2017, 20, 660-669.	1.0	18
29	Reinforcing Doses of Intravenous Cocaine Produce Only Modest Dopamine Uptake Inhibition. ACS Chemical Neuroscience, 2017, 8, 281-289.	1.7	14
30	Susceptibility to traumatic stress sensitizes the dopaminergic response to cocaine and increases motivation for cocaine. Neuropharmacology, 2017, 125, 295-307.	2.0	48
31	Hypocretin receptor 1 blockade produces bimodal modulation of cocaine-associated mesolimbic dopamine signaling. Psychopharmacology, 2017, 234, 2761-2776.	1.5	26
32	Hypocretin/orexin knockâ€out mice display disrupted behavioral and dopamine responses to cocaine. Addiction Biology, 2017, 22, 1695-1705.	1.4	31
33	L-Tyrosine availability affects basal and stimulated catecholamine indices in prefrontal cortex and striatum of the rat. Neuropharmacology, 2017, 123, 159-174.	2.0	9
34	The GLP-1 agonist exendin-4 attenuates self-administration of sweetened fat on fixed and progressive ratio schedules of reinforcement in rats. Pharmacology Biochemistry and Behavior, 2016, 142, 48-55.	1.3	11
35	Norepinephrine at the nexus of arousal, motivation and relapse. Brain Research, 2016, 1641, 207-216.	1.1	52
36	Clozapine N-Oxide Administration Produces Behavioral Effects in Long–Evans Rats: Implications for Designing DREADD Experiments. ENeuro, 2016, 3, ENEURO.0219-16.2016.	0.9	288

#	Article	IF	CITATIONS
37	Reduced dopamine and glutamate neurotransmission in the nucleus accumbens of quinpiroleâ€sensitized rats hints at inhibitory D2 autoreceptor function. Journal of Neurochemistry, 2015, 134, 1081-1090.	2.1	23
38	Hypocretin receptor 1 blockade preferentially reduces high effort responding for cocaine without promoting sleep. Behavioural Brain Research, 2015, 291, 377-384.	1.2	41
39	Dopamine uptake dynamics are preserved under isoflurane anesthesia. Neuroscience Letters, 2015, 606, 129-134.	1.0	25
40	Hypocretin/Orexin Regulation of Dopamine Signaling and Cocaine Self-Administration Is Mediated Predominantly by Hypocretin Receptor 1. ACS Chemical Neuroscience, 2015, 6, 138-146.	1.7	74
41	Sustained <i>N</i> â€methylâ€ <scp>d</scp> â€aspartate receptor hypofunction remodels the dopamine system and impairs phasic signaling. European Journal of Neuroscience, 2014, 40, 2255-2263.	1.2	15
42	Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2751-9.	3.3	152
43	Enduring increases in anxietyâ€like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats. European Journal of Neuroscience, 2013, 37, 1022-1031.	1.2	114
44	Paradoxical tolerance to cocaine after initial supersensitivity in drugâ€useâ€prone animals. European Journal of Neuroscience, 2013, 38, 2628-2636.	1.2	24
45	Presynaptic dopamine modulation by stimulant self-administration. Frontiers in Bioscience - Scholar, 2013, S5, 261-276.	0.8	20
46	Hypocretin/Orexin Involvement in Reward and Reinforcement. Vitamins and Hormones, 2012, 89, 185-208.	0.7	22
47	Noradrenergic modulation of wakefulness/arousal. Sleep Medicine Reviews, 2012, 16, 187-197.	3.8	276
48	Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms. Frontiers in Behavioral Neuroscience, 2012, 6, 54.	1.0	60
49	Emerging, reemerging, and forgotten brain areas of the reward circuit: Notes from the 2010 Motivational Neural Networks conference. Behavioural Brain Research, 2011, 225, 348-357.	1.2	25
50	Sleep Neurobiology from a Clinical Perspective. Sleep, 2011, 34, 845-58.	0.6	203
51	Low and high affinity dopamine transporter inhibitors block dopamine uptake within 5 sec of intravenous injection. Neuroscience, 2011, 182, 125-132.	1.1	28
52	Demon Voltammetry and Analysis software: Analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures. Journal of Neuroscience Methods, 2011, 202, 158-164.	1.3	275
53	Hypocretin 1/orexin A in the ventral tegmental area enhances dopamine responses to cocaine and promotes cocaine self-administration. Psychopharmacology, 2011, 214, 415-426.	1.5	161
54	Hypocretin/orexin in arousal and stress. Brain Research, 2010, 1314, 91-102.	1.1	150

#	Article	IF	CITATIONS
55	The hypocretin–orexin system regulates cocaine selfâ€administration via actions on the mesolimbic dopamine system. European Journal of Neuroscience, 2010, 31, 336-348.	1.2	228
56	Mechanisms underlying cognitive enhancement and reversal of cognitive deficits in nonhuman primates by the ampakine CX717. Psychopharmacology, 2009, 202, 355-369.	1.5	44
57	Coping behavior causes asymmetric changes in neuronal activation in the prefrontal cortex and amygdala. Synapse, 2009, 63, 82-85.	0.6	37
58	Short-acting cocaine and long-acting GBR-12909 both elicit rapid dopamine uptake inhibition following intravenous delivery. Neuroscience, 2008, 155, 250-257.	1.1	39
59	Running Promotes Wakefulness and Increases Cataplexy in Orexin Knockout Mice. Sleep, 2007, 30, 1417-1425.	0.6	105
60	Afferents to the orexin neurons of the rat brain. Journal of Comparative Neurology, 2006, 494, 845-861.	0.9	520
61	Organization of noradrenergic efferents to arousal-related basal forebrain structures. Journal of Comparative Neurology, 2006, 496, 668-683.	0.9	87
62	Organization of hypocretin/orexin efferents to locus coeruleus and basal forebrain arousal-related structures. Journal of Comparative Neurology, 2005, 481, 160-178.	0.9	136
63	Hypocretins: Waking, Arousal, or Action?. Neuron, 2005, 46, 696-698.	3.8	25
64	Diurnal levels of Fos immunoreactivity are elevated within hypocretin neurons in lactating mice. Peptides, 2004, 25, 1927-1934.	1.2	15
65	Sleep neurobiology for the clinician. Sleep, 2004, 27, 811-20.	0.6	92
66	Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration. Neuroscience, 2003, 121, 201-217.	1.1	135
67	Additive wake-promoting actions of medial basal forebrain noradrenergic $\hat{l}\pm 1$ - and \hat{l}^2 -receptor stimulation Behavioral Neuroscience, 2003, 117, 350-359.	0.6	63
68	Prolactin-releasing peptide (PrRP) promotes awakening and suppresses absence seizures. Neuroscience, 2002, 114, 229-238.	1.1	41
69	Circadian-dependent and circadian-independent behavioral actions of hypocretin/orexin. Brain Research, 2002, 943, 224-236.	1.1	93
70	Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience, 2001, 106, 699-715.	1.1	297
71	Synergistic sedative effects of noradrenergic $\hat{l}\pm 1$ - and \hat{l}^2 -receptor blockade on forebrain electroencephalographic and behavioral indices. Neuroscience, 2000, 99, 495-505.	1.1	61