
Andrea Gualandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8331626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of BODIPY dyes as triplet photosensitizers: electronic properties tailored for solar energy conversion, photoredox catalysis and photodynamic therapy. Chemical Science, 2021, 12, 6607-6628.	3.7	155
2	Organocatalytic Enantioselective Alkylation of Aldehydes with [Fe(bpy) ₃]Br ₂ Catalyst and Visible Light. ACS Catalysis, 2015, 5, 5927-5931.	5.5	148
3	Coumarin derivatives as versatile photoinitiators for 3D printing, polymerization in water and photocomposite synthesis. Polymer Chemistry, 2019, 10, 872-884.	1.9	100
4	Highly Enantioselective αâ€Alkylation of Aldehydes with 1,3â€Benzodithiolylium Tetrafluoroborate: A Formal Organocatalytic αâ€Alkylation of Aldehydes by the Carbenium Ion. Angewandte Chemie - International Edition, 2011, 50, 7842-7846.	7.2	85
5	Photocatalytic ATRA reaction promoted by iodo-Bodipy and sodium ascorbate. Chemical Communications, 2017, 53, 1591-1594.	2.2	79
6	Asymmetric Reactions Enabled by Cooperative Enantioselective Amino- and Lewis Acid Catalysis. Topics in Current Chemistry, 2020, 378, 1.	3.0	74
7	S _N 1â€Type Reactions in the Presence of Water: Indium(III)â€Promoted Highly Enantioselective Organocatalytic Propargylation of Aldehydes. Chemistry - A European Journal, 2011, 17, 7404-7408.	1.7	73
8	A highly enantioselective acyl-Mannich reaction of isoquinolines with aldehydes promoted by proline derivatives: an approach to 13-alkyl-tetrahydroprotoberberine alkaloids. Chemical Science, 2014, 5, 3915.	3.7	70
9	Mechanistic insights into two-photon-driven photocatalysis in organic synthesis. Physical Chemistry Chemical Physics, 2018, 20, 8071-8076.	1.3	69
10	Application of coumarin dyes for organic photoredox catalysis. Chemical Communications, 2018, 54, 10044-10047.	2.2	64
11	Synergy, Compatibility, and Innovation: Merging Lewis Acids with Stereoselective Enamine Catalysis. Chemistry - an Asian Journal, 2014, 9, 984-995.	1.7	61
12	Theory Meets Experiment for Noncovalent Complexes: The Puzzling Case of Pnicogen Interactions. Angewandte Chemie - International Edition, 2018, 57, 13853-13857.	7.2	60
13	Allylic alcohols: Valuable synthetic equivalents of non-activated alkenes in gold-catalyzed enantioselective alkylation of indoles. Journal of Organometallic Chemistry, 2011, 696, 338-347.	0.8	58
14	Cp ₂ TiCl ₂ -Catalyzed Photoredox Allylation of Aldehydes with Visible Light. ACS Catalysis, 2020, 10, 3857-3863.	5.5	55
15	A general stereoselective enamine mediated alkylation of α-substituted aldehydes. Chemical Communications, 2012, 48, 3614.	2.2	49
16	Keto oumarin scaffold for photoinitiators for 3D printing and photocomposites. Journal of Polymer Science, 2020, 58, 1115-1129.	2.0	49
17	Pyrrole Macrocyclic Ligands for Cu-Catalyzed Asymmetric Henry Reactions. Journal of Organic Chemistry, 2011, 76, 3399-3408.	1.7	46
18	Photoredox radical conjugate addition of dithiane-2-carboxylate promoted by an iridium(<scp>iii</scp>) phenyl-tetrazole complex: a formal radical methylation of Michael acceptors. Chemical Science, 2017, 8, 1613-1620.	3.7	45

#	Article	IF	CITATIONS
19	Metallaphotoredox catalysis with organic dyes. Organic and Biomolecular Chemistry, 2021, 19, 3527-3550.	1.5	44
20	Catalytic Stereoselective S _N 1â€Type Reactions Promoted by Chiral Phosphoric Acids as BrÃ,nsted Acid Catalysts. Asian Journal of Organic Chemistry, 2018, 7, 1957-1981.	1.3	42
21	Photocatalytic Radical Alkylation of Electrophilic Olefins by Benzylic and Alkylic Zinc-Sulfinates. ACS Catalysis, 2017, 7, 5357-5362.	5.5	41
22	Allylation of aldehydes by dual photoredox and nickel catalysis. Chemical Communications, 2019, 55, 6838-6841.	2.2	40
23	Asymmetric Synthesis of 2-(2-Pyridyl)aziridines from 2-Pyridineimines Bearing Stereogenic N-Alkyl Substituents and Regioselective Opening of the Aziridine Ring. Journal of Organic Chemistry, 2006, 71, 9373-9381.	1.7	38
24	Atroposelective Organocatalysis. Angewandte Chemie - International Edition, 2011, 50, 3847-3849.	7.2	38
25	C-hexaphenyl-substituted trianglamine as a chiral solvating agent for carboxylic acids. Organic and Biomolecular Chemistry, 2011, 9, 4234.	1.5	37
26	Highly Performing Iodoperfluoroalkylation of Alkenes Triggered by the Photochemical Activity of Perylene Diimides. ChemPhotoChem, 2019, 3, 193-197.	1.5	37
27	Shining Light on Ti ^{IV} Complexes: Exceptional Tools for Metallaphotoredox Catalysis. European Journal of Organic Chemistry, 2020, 2020, 6955-6965.	1.2	37
28	Al(Salen) Metal Complexes in Stereoselective Catalysis. Molecules, 2019, 24, 1716.	1.7	33
29	Substrate induced diastereoselective hydrogenation/reduction of arenes and heteroarenes. RSC Advances, 2016, 6, 18419-18451.	1.7	32
30	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
31	Chemo- and Enzyme-Catalyzed Reactions Revealing a Common Temperature-Dependent Dynamic Solvent Effect on Enantioselectivity. Helvetica Chimica Acta, 2003, 86, 3548-3559.	1.0	31
32	Creating Chemical Diversity in Indole Compounds by Merging Au and Ru Catalysis. ChemCatChem, 2010, 2, 661-665.	1.8	30
33	A Catalytic Reactor for the Organocatalyzed Enantioselective Continuous Flow Alkylation of Aldehydes. ChemSusChem, 2014, 7, 3534-3540.	3.6	28
34	Can the π-Facial Selectivity of Solvation Be Predicted by Atomistic Simulation?. Journal of the American Chemical Society, 2005, 127, 10699-10706.	6.6	27
35	Ironâ€Promoted Radical Reactions: Current Status and Perspectives. Asian Journal of Organic Chemistry, 2017, 6, 1160-1179.	1.3	27
36	A facile hydroxylation of arylboronic acids mediated by sodium ascorbate. Organic Chemistry Frontiers, 2018, 5, 1573-1578.	2.3	27

#	Article	IF	CITATIONS
37	Catalytic Photoredox Allylation of Aldehydes Promoted by a Cobalt Complex. Advanced Synthesis and Catalysis, 2021, 363, 1105-1111.	2.1	27
38	Indium(III)â€Promoted Organocatalytic Enantioselective <i>α</i> â€Alkylation of Aldehydes with Benzylic and Benzhydrylic Alcohols. Asian Journal of Organic Chemistry, 2012, 1, 38-42.	1.3	26
39	Diastereoselective and enantioselective photoredox pinacol coupling promoted by titanium complexes with a red-absorbing organic dye. Chemical Science, 2022, 13, 5973-5981.	3.7	26
40	Engineered phenylalanine dehydrogenase in organic solvents: homogeneous and biphasic enzymatic reactions. Organic and Biomolecular Chemistry, 2005, 3, 4316.	1.5	25
41	Direct and Stereoselective Alkylation of Nitro Derivatives with Activated Alcohols in Trifluoroethanol. European Journal of Organic Chemistry, 2012, 2012, 6697-6701.	1.2	25
42	Asymmetric Synthesis of 8-Aminoindolizidine from Chiral 2-Pyrroleimines. Journal of Organic Chemistry, 2008, 73, 8376-8381.	1.7	24
43	Aluminum(III) Salen Complexes as Active Photoredox Catalysts. European Journal of Organic Chemistry, 2020, 2020, 1486-1490.	1.2	24
44	Boron Compounds as Additives for the Cationic Polymerization Using Coumarin Derivatives in Epoxy Silicones. Macromolecular Chemistry and Physics, 2021, 222, 2000404.	1.1	24
45	Stereoselective Organocatalytic Addition of Nucleophiles to Isoquinolinium and 3,4-dihydroisoquinolinium Ions: A Simple Approach for the Synthesis of Isoquinoline Alkaloids. Catalysis Letters, 2015, 145, 398-419.	1.4	23
46	Organocatalytic Stereoselective Addition of Aldehydes to Acylquinolinium Ions. European Journal of Organic Chemistry, 2016, 2016, 3200-3207.	1.2	23
47	Catalytic Epoxidation of Alkenes by the Manganese Complex of a Reduced Porphyrinogen Macrocycle. Advanced Synthesis and Catalysis, 2012, 354, 428-440.	2.1	22
48	Stereoselective SN1-Type Reaction of Enols and Enolates. Synthesis, 2017, 49, 3433-3443.	1.2	22
49	Highly Diastereoselective Synthesis of 2,6-Di[1-(2-alkylaziridin-1-yl)alkyl]pyridines, Useful Ligands in Palladium-Catalyzed Asymmetric Allylic Alkylation. Advanced Synthesis and Catalysis, 2006, 348, 1883-1893.	2.1	21
50	Synthesis of Bench-Stable Diarylmethylium Tetrafluoroborates. Journal of Organic Chemistry, 2015, 80, 4791-4796.	1.7	21
51	Asymmetric Route to Pyridines Bearing a Highly Functionalized 2-Alkyl Substituent by Aziridine Ring-Opening Reactions. Journal of Organic Chemistry, 2007, 72, 3859-3862.	1.7	20
52	A Straightforward Organocatalytic Alkylation of 2â€Arylacetaldehydes: An Approach towards Bisabolanes. Advanced Synthesis and Catalysis, 2014, 356, 528-536.	2.1	20
53	A Highly Stereoselective Organocatalytic Approach to Lilial® and Muguesia. Synlett, 2013, 24, 449-452.	1.0	19
54	Organocatalytic enantioselective synthesis of 1-vinyl tetrahydroisoquinolines through allenamide activation with chiral BrĀ,nsted acids. RSC Advances, 2015, 5, 10546-10550.	1.7	19

#	Article	IF	CITATIONS
55	Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study. Nanoscale, 2016, 8, 13678-13686.	2.8	19
56	Me ₂ Znâ€Mediated Catalytic Enantio―and Diastereoselective Addition of TosMIC to Ketones. Chemistry - A European Journal, 2015, 21, 18949-18952.	1.7	18
57	Photoredox Propargylation of Aldehydes Catalytic in Titanium. Journal of Organic Chemistry, 2021, 86, 7002-7009.	1.7	18
58	Stereoselective synthesis of ring C-hexasubstituted trianglamines. Organic and Biomolecular Chemistry, 2010, 8, 3992.	1.5	17
59	Chiral Perazamacrocycles: Synthesis and Applications. Part 2. Current Organic Synthesis, 2009, 6, 119-142.	0.7	16
60	Catalytic Hydrogenation of <i>meso</i> â€Octamethylporphyrinogen (Calix[4]pyrrole). Chemistry - A European Journal, 2010, 16, 4224-4230.	1.7	16
61	Stereoselective Organocatalytic Alkylations with Carbenium Ions. Synlett, 2013, 24, 281-296.	1.0	15
62	Photoredox Allylation Reactions Mediated by Bismuth in Aqueous Conditions. European Journal of Organic Chemistry, 2021, 2021, 1624-1627.	1.2	15
63	Organocatalytic Stereoselective <i>α</i> â€Formylation of Ketones. ChemCatChem, 2012, 4, 968-971.	1.8	13
64	The Facile and Direct Formylation of Organoboron Aromatic Compounds with Benzodithiolylium Tetrafluoroborate. European Journal of Organic Chemistry, 2013, 2013, 4909-4917.	1.2	13
65	Chiral Perazamacrocycles: Synthesis and Applications. Part 1. Current Organic Synthesis, 2009, 6, 102-118.	0.7	13
66	Synergistic Stereoselective Organocatalysis with Indium(III) Salts. Synthesis, 2014, 46, 1321-1328.	1.2	12
67	Organocatalyzed Asymmetric Alkylation of Stable Aryl or Heteroaryl(3â€indolyl)methylium <i>o</i> â€Benzenedisulfonimides. Asian Journal of Organic Chemistry, 2015, 4, 337-345.	1.3	12
68	Phenoxyaluminum(salophen) Scaffolds: Synthesis, Electrochemical Properties, and Selfâ€Assembly at Surfaces of Multifunctional Systems. Chemistry - A European Journal, 2018, 24, 11954-11960.	1.7	12
69	Stereoselective synthesis of substituted 1,2-ethylenediaziridines and their use as ligands in palladium-catalyzed asymmetric allylic alkylation. Tetrahedron, 2010, 66, 715-720.	1.0	11
70	From QCA (Quantum Cellular Automata) to Organocatalytic Reactions with Stabilized Carbenium Ions. Chemical Record, 2016, 16, 1228-1243.	2.9	11
71	Stereoselective Reactions with Chiral Schiff Base Metal Complexes. Chimia, 2017, 71, 562.	0.3	11
72	Asymmetric Synthesis of 1â€(2â€Pyrrolyl)alkylamines by the Addition of Organometallic Reagents to Chiral 2â€Pyrroleimines. European Journal of Organic Chemistry, 2007, 2007, 5573-5582.	1.2	10

#	Article	IF	CITATIONS
73	Stereoselective synthesis of substituted 2,5-diazabicyclo[2.2.1]heptanes by iodine-mediated cyclization of optically pure compounds containing the 4,5-diamino-1,7-octadiene and 1,2-diamino-4-alkene moieties. Tetrahedron, 2007, 63, 12446-12453.	1.0	10
74	A Rotaxane Turing Machine for Peptides. ChemBioChem, 2013, 14, 1185-1187.	1.3	10
75	Tailored Coumarin Dyes for Photoredox Catalysis: Calculation, Synthesis, and Electronic Properties. ChemCatChem, 2021, 13, 981-989.	1.8	10
76	A Versatile Organocatalytic Approach for the Synthesis of Enantioenriched <i>gem</i> â€Difluorinated Compounds. Chemistry - A European Journal, 2015, 21, 13689-13695.	1.7	9
77	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie, 0, , .	1.6	8
78	A Practical and Stereoselective Organocatalytic Alkylation of Aldehydes with Benzodithiolylium Tetrafluoroborate. Chirality, 2014, 26, 607-613.	1.3	7
79	Theory Meets Experiment for Noncovalent Complexes: The Puzzling Case of Pnicogen Interactions. Angewandte Chemie, 2018, 130, 14049-14053.	1.6	7
80	A Journey from Thermally Tunable Synthesis to Spectroscopy of Phenylmethanimine in Gas Phase and Solution. Chemistry - A European Journal, 2020, 26, 15016-15022.	1.7	7
81	Hydrogenation of Calix[4]pyrrole: From the Formation to the Synthesis of Calix[4]pyrrolidine. European Journal of Organic Chemistry, 2021, 2021, 4444-4464.	1.2	7
82	Effect of the iodine atom position on the phosphorescence of BODIPY derivatives: a combined computational and experimental study. Photochemical and Photobiological Sciences, 2022, 21, 777-786.	1.6	7
83	Dual Photoredox and Nickel Catalysed Reductive Coupling of Alkynes and Aldehydes. Advanced Synthesis and Catalysis, 2022, 364, 3410-3419.	2.1	7
84	Solvation-dependent diastereofacial selectivity: addition of lithioacetonitrile to 2-phenyl propanal. Tetrahedron, 2005, 61, 69-75.	1.0	6
85	Asymmetric Synthesis of 3,4-Diaminocyclohexanol andendo-7-Azabicyclo[2.2.1]heptan-2-amine. Organic Letters, 2010, 12, 4964-4967.	2.4	6
86	Enantio and Diastereoselective Addition of Phenylacetylene to Racemic α-chloroketones. Molecules, 2011, 16, 5298-5314.	1.7	6
87	Rhodium/Graphite-Catalyzed Hydrogenation of Carbocyclic and Heterocyclic Aromatic Compounds. Synthesis, 2009, 2009, 2440-2446.	1.2	5
88	Octaâ€1,7â€dieneâ€4,5â€diamine Derivatives: Useful Intermediates for the Stereoselective Synthesis of Nitrogen Heterocycles and Ligands for Asymmetric Catalysis. European Journal of Organic Chemistry, 2016, 2016, 3143-3156.	1.2	5
89	Self-Assembled Two-Dimensional Supramolecular Networks Characterized by Scanning Tunneling Microscopy and Spectroscopy in Air and under Vacuum. Langmuir, 2018, 34, 7698-7707.	1.6	4
90	A supramolecular bifunctional iridium photoaminocatalyst for the enantioselective alkylation of aldehydes. Dalton Transactions, 2020, 49, 14497-14505.	1.6	4

0

#	ARTICLE	IF	CITATIONS
91	4-Fluoro-Threonine: From Diastereoselective Synthesis to pH-Dependent Conformational Equilibrium in Aqueous Solution. ACS Omega, 2021, 6, 13170-13181.	1.6	4
92	Stereoselective synergystic organo photoredox catalysis with enamines and iminiums. Physical Sciences Reviews, 2020, 5, .	0.8	4
93	A Photoredox Nozakiâ€Hiyama Reaction Catalytic in Chromium. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
94	Diastereoselective Addition of Organometallic Reagents to Diimines Derived from (R,R)-1,2-Diaminocyclohexane and Aromatic Aldehydes. Letters in Organic Chemistry, 2009, 6, 434-438.	0.2	3
95	Asymmetric Synthesis of 1-Substituted 1,2,3,4-Tetrahydropyrrolo[1,2-a]pyrÂazines. Synthesis, 2011, 2011, 909-918.	1.2	1
96	Mapping Conformational Changes in a Self-Assembled Two-Dimensional Molecular Network by Statistical Analysis of Conductance Images. Physical Review Applied, 2019, 11, .	1.5	1
97	Acceleration of oxidation promoted by laccase irradiation with red light. New Journal of Chemistry, 2022, 46, 8662-8668.	1.4	1
98	Inside Cover: Highly Enantioselective αâ€Alkylation of Aldehydes with 1,3-Benzodithiolylium Tetrafluoroborate: A Formal Organocatalytic αâ€Alkylation of Aldehydes by the Carbenium Ion (Angew.) Tj ETO)q 0.0 0 rg	BTØOverlock
99	Other Nitrogen Heterocycles: Carbazoles, Imides and PDI, mpg-C ₃ N ₄ , Tetrazines, Riboflavin, and BODIPY. Catalytic Science Series, 2019, , 423-469.	0.6	0

100Asymmetric Reactions Enabled by Cooperative Enantioselective Amino†and Lewis Acid Catalysis. Topics
in Current Chemistry Collections, 2020, , 29-65.0.2