
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8331434/publications.pdf Version: 2024-02-01

DON CUDNETT

#	Article	IF	CITATIONS
1	Shocks in the Very Local Interstellar Medium. Space Science Reviews, 2022, 218, 27.	3.7	13
2	Magnetic Field and Plasma Density Observations of a Pressure Front by Voyager 1 during 2020 in the Very Local Interstellar Medium. Astrophysical Journal, 2021, 911, 61.	1.6	24
3	Persistent plasma waves in interstellar space detected by Voyager 1. Nature Astronomy, 2021, 5, 761-765.	4.2	20
4	Magnetic Field Draping of the Heliopause and Its Consequences for Radio Emission in the Very Local Interstellar Medium. Astrophysical Journal Letters, 2021, 917, L20.	3.0	15
5	Planetary Period Oscillations of Saturn's Dayside Equatorial Ionospheric Electron Density Observed on Cassini's Proximal Passes. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029332.	0.8	3
6	A Foreshock Model for Interstellar Shocks of Solar Origin: Voyager 1 and 2 Observations. Astronomical Journal, 2021, 161, 11.	1.9	21
7	The Dayside Ionopause of Mars: Solar Wind Interaction, Pressure Balance, and Comparisons With Venus. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006936.	1.5	7
8	Origin of the Weak Plasma Emission Line Detected by Voyager 1 in the Interstellar Medium: Evidence for Suprathermal Electrons. Astrophysical Journal, 2021, 921, 62.	1.6	10
9	Multiâ€Point Observation of Hiss Emerging From Lightning Whistlers. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029524.	0.8	3
10	Variations in the Ionospheric Peak Altitude at Mars in Response to Dust Storms: 13 Years of Observations From the Mars Express Radar Sounder. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006092.	1.5	19
11	Prolonged Lifetime of the Transient Ionized Layer in the Martian Atmosphere Caused by Comet Siding Spring. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006607.	1.5	1
12	Waveâ€Particle Interactions Associated With Io's Auroral Footprint: Evidence of Alfvén, Ion Cyclotron, and Whistler Modes. Geophysical Research Letters, 2020, 47, e2020GL088432.	1.5	34
13	Nondetection of Radio Emissions From Titan Lightning by Cassini RPWS. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006496.	1.5	1
14	The Generation of Upwardâ€Propagating Whistler Mode Waves by Electron Beams in the Jovian Polar Regions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027868.	0.8	11
15	The Origins of Space Radio and Plasma Wave Research at the University of Iowa. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027324.	0.8	1
16	Martian Ionopause Boundary: Coincidence With Photoelectron Boundary and Response to Internal and External Drivers. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027409.	0.8	11
17	Distribution in Saturn's Inner Magnetosphere From 2.4 to 10 R _S : A Diffusive Equilibrium Model. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027545.	0.8	9
18	Observations of a Radial Density Gradient in the Very Local Interstellar Medium by Voyager 2. Astrophysical Journal Letters, 2020, 900, L1.	3.0	15

#	Article	IF	CITATIONS
19	Evidence of Electron Density Enhancements in the Postâ€Apoapsis Sector of Enceladus' Orbit. Journal of Geophysical Research: Space Physics, 2020, 125, .	0.8	0
20	The Effects of Solar Wind Dynamic Pressure on the Structure of the Topside Ionosphere of Mars. Geophysical Research Letters, 2019, 46, 8652-8662.	1.5	22
21	Oblique Reflections of Mars Express MARSIS Radar Signals From Ionospheric Density Structures: Raytracing Analysis. Journal of Geophysical Research E: Planets, 2019, 124, 1177-1187.	1.5	1
22	A Persistent, Largeâ€Scale, and Ordered Electrodynamic Connection Between Saturn and Its Main Rings. Geophysical Research Letters, 2019, 46, 7166-7172.	1.5	2
23	The Effects of Crustal Magnetic Fields and Solar EUV Flux on Ionopause Formation at Mars. Geophysical Research Letters, 2019, 46, 10257-10266.	1.5	14
24	Plasma densities near and beyond the heliopause from the Voyager 1 and 2 plasma wave instruments. Nature Astronomy, 2019, 3, 1024-1028.	4.2	63
25	Analysis of a long-lived, two-cell lightning storm on Saturn. Astronomy and Astrophysics, 2019, 621, A113.	2.1	4
26	Evidence for low density holes in Jupiter's ionosphere. Nature Communications, 2019, 10, 2751.	5.8	4
27	Saturn's Dusty Ionosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 1679-1697.	0.8	27
28	Electron Density Profiles in the Upper Ionosphere of Mars From 11 Years of MARSIS Data: Variability Due to Seasons, Solar Cycle, and Crustal Magnetic Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 3057-3066.	0.8	16
29	Characterizing Average Electron Densities in the Martian Dayside Upper Ionosphere. Journal of Geophysical Research E: Planets, 2019, 124, 76-93.	1.5	13
30	Electron Density Distributions in Saturn's Ionosphere. Geophysical Research Letters, 2019, 46, 3061-3068.	1.5	27
31	Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves. Geophysical Research Letters, 2018, 45, 1246-1252.	1.5	17
32	Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding. Journal of Geophysical Research: Space Physics, 2018, 123, 1018-1030.	0.8	14
33	First Observation of Lion Roar Emission in Saturn's Magnetosheath. Geophysical Research Letters, 2018, 45, 486-492.	1.5	5
34	The Dusty Plasma Disk Around the Janus/Epimetheus Ring. Journal of Geophysical Research: Space Physics, 2018, 123, 4668-4678.	0.8	8
35	Analysis of Intense <i>Z</i> â€Mode Emission Observed During the Cassini Proximal Orbits. Geophysical Research Letters, 2018, 45, 6766-6772.	1.5	8
36	In situ measurements of Saturn's ionosphere show that it is dynamic and interacts with the rings. Science, 2018, 359, 66-68.	6.0	40

#	Article	IF	CITATIONS
37	Dust Observations by the Radio and Plasma Wave Science Instrument During Cassini's Grand Finale. Geophysical Research Letters, 2018, 45, 10,101.	1.5	16
38	An SLS5 Longitude System Based on the Rotational Modulation of Saturn Radio Emissions. Geophysical Research Letters, 2018, 45, 7297-7305.	1.5	13
39	Ions Accelerated by Sounderâ€Plasma Interaction as Observed by Mars Express. Journal of Geophysical Research: Space Physics, 2018, 123, 9802-9814.	0.8	5
40	The Acceleration of Electrons to High Energies Over the Jovian Polar Cap via Whistler Mode Waveâ€Particle Interactions. Journal of Geophysical Research: Space Physics, 2018, 123, 7523-7533.	0.8	21
41	Whistler Mode Waves Associated With Broadband Auroral Electron Precipitation at Jupiter. Geophysical Research Letters, 2018, 45, 9372-9379.	1.5	21
42	The Cassini RPWS/LP Observations of Dusty Plasma in the Kronian System. Proceedings of the International Astronomical Union, 2018, 14, 415-416.	0.0	0
43	Saturn's Plasma Density Depletions Along Magnetic Field Lines Connected to the Main Rings. Geophysical Research Letters, 2018, 45, 8104-8110.	1.5	6
44	Strong whistler mode waves observed in the vicinity of Jupiter's moons. Nature Communications, 2018, 9, 3131.	5.8	22
45	Mars Initial Reference Ionosphere (MIRI) Model: Updates and Validations Using MAVEN, MEX, and MRO Data Sets. Journal of Geophysical Research: Space Physics, 2018, 123, 5674-5683.	0.8	12
46	Auroral Hiss Emissions During Cassini's Grand Finale: Diverse Electrodynamic Interactions Between Saturn and Its Rings. Geophysical Research Letters, 2018, 45, 6782-6789.	1.5	8
47	Enceladus Auroral Hiss Emissions During Cassini's Grand Finale. Geophysical Research Letters, 2018, 45, 7347-7353.	1.5	16
48	Jupiter Lightningâ€induced Whistler and Sferic Events With Waves and MWR During Juno Perijoves. Geophysical Research Letters, 2018, 45, 7268-7276.	1.5	11
49	MARSIS Observations of Fieldâ€Aligned Irregularities and Ducted Radio Propagation in the Martian Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 6251-6263.	0.8	2
50	MARSIS Observations of the Martian Nightside Ionosphere During the September 2017 Solar Event. Geophysical Research Letters, 2018, 45, 7960-7967.	1.5	23
51	Cassini RPWS Dust Observation Near the Janus/Epimetheus Orbit. Journal of Geophysical Research: Space Physics, 2018, 123, 4952-4960.	0.8	9
52	Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth. Nature Astronomy, 2018, 2, 544-548.	4.2	27
53	Prevalent lightning sferics at 600 megahertz near Jupiter's poles. Nature, 2018, 558, 87-90.	13.7	52
54	Whistler mode waves upstream of Saturn. Journal of Geophysical Research: Space Physics, 2017, 122, 227-234.	0.8	4

#	Article	IF	CITATIONS
55	The transient topside layer and associated current sheet in the ionosphere of Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 5579-5590.	0.8	10
56	Plasma waves in Jupiter's highâ€latitude regions: Observations from the Juno spacecraft. Geophysical Research Letters, 2017, 44, 4447-4454.	1.5	27
57	Ion trapping by dust grains: Simulation applications to the Enceladus plume. Journal of Geophysical Research E: Planets, 2017, 122, 729-743.	1.5	5
58	A new view of Jupiter's auroral radio spectrum. Geophysical Research Letters, 2017, 44, 7114-7121.	1.5	35
59	Survey of Saturn electrostatic cyclotron harmonic wave intensity. Journal of Geophysical Research: Space Physics, 2017, 122, 8214-8227.	0.8	10
60	Three-dimensional Features of the Outer Heliosphere Due to Coupling between the Interstellar and Heliospheric Magnetic Field. V. The Bow Wave, Heliospheric Boundary Layer, Instabilities, and Magnetic Reconnection. Astrophysical Journal, 2017, 845, 9.	1.6	65
61	Intense Harmonic Emissions Observed in Saturn's Ionosphere. Geophysical Research Letters, 2017, 44, 12,049.	1.5	12
62	Ionospheric Electron Densities at Mars: Comparison of Mars Express Ionospheric Sounding and MAVEN Local Measurements. Journal of Geophysical Research: Space Physics, 2017, 122, 12,393.	0.8	6
63	Largeâ€scale solar wind flow around Saturn's nonaxisymmetric magnetosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 9198-9206.	0.8	7
64	Dynamic response of the Martian ionosphere to an interplanetary shock: Mars Express and MAVEN observations. Geophysical Research Letters, 2017, 44, 9116-9123.	1.5	14
65	Dust detection in space using the monopole and dipole electric field antennas. Journal of Geophysical Research: Space Physics, 2016, 121, 11,964.	0.8	23
66	Rotational modulation of Saturn's radio emissions after equinox. Journal of Geophysical Research: Space Physics, 2016, 121, 11,714.	0.8	25
67	Spatial distribution of Langmuir waves observed upstream of Saturn's bow shock by Cassini. Journal of Geophysical Research: Space Physics, 2016, 121, 7771-7784.	0.8	6
68	Empirical model of the Martian dayside ionosphere: Effects of crustal magnetic fields and solar ionizing flux at higher altitudes. Journal of Geophysical Research: Space Physics, 2016, 121, 1760-1771.	0.8	31
69	On improving the accuracy of electron density profiles obtained at high altitudes by the ionospheric sounder on the Mars Express spacecraft. Journal of Geophysical Research: Space Physics, 2016, 121, 10,117-10,129.	0.8	8
70	Plasma observations during the Mars atmospheric "plume―event of March–April 2012. Journal of Geophysical Research: Space Physics, 2016, 121, 3139-3154.	0.8	10
71	Survey of whistler mode chorus intensity at Jupiter. Journal of Geophysical Research: Space Physics, 2016, 121, 9758-9770.	0.8	23
72	Source region and growth analysis of narrowband <i>Z</i> â€mode emission at Saturn. Journal of Geophysical Research: Space Physics, 2016, 121, 11,929.	0.8	14

#	Article	IF	CITATIONS
73	A case study of a density structure over a vertical magnetic field region in the Martian ionosphere. Geophysical Research Letters, 2016, 43, 4665-4672.	1.5	8
74	Control of the topside Martian ionosphere by crustal magnetic fields. Journal of Geophysical Research: Space Physics, 2015, 120, 3042-3058.	0.8	45
75	An ionized layer in the upper atmosphere of Mars caused by dust impacts from comet Siding Spring. Geophysical Research Letters, 2015, 42, 4745-4751.	1.5	23
76	MARSIS remote sounding of localized density structures in the dayside Martian ionosphere: A study of controlling parameters. Journal of Geophysical Research: Space Physics, 2015, 120, 8125-8145.	0.8	20
77	PRECURSORS TO INTERSTELLAR SHOCKS OF SOLAR ORIGIN. Astrophysical Journal, 2015, 809, 121.	1.6	68
78	Electrostatic solitary waves observed at Saturn by Cassini inside 10 <i>R_s</i> and near Enceladus. Journal of Geophysical Research: Space Physics, 2015, 120, 6569-6580.	0.8	34
79	Effects of Saturn's magnetospheric dynamics on Titan's ionosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 8884-8898.	0.8	11
80	The equivalent slab thickness of Mars' ionosphere: Implications for thermospheric temperature. Geophysical Research Letters, 2015, 42, 3560-3568.	1.5	8
81	Survey of Saturn <i>Z</i> â€mode emission. Journal of Geophysical Research: Space Physics, 2015, 120, 6176-6187.	0.8	12
82	Total electron content in the Martian atmosphere: A critical assessment of the Mars Express MARSIS data sets. Journal of Geophysical Research: Space Physics, 2015, 120, 2166-2182.	0.8	32
83	Evidence for a seasonally dependent ring plasma in the region between Saturn's A Ring and Enceladus' orbit. Journal of Geophysical Research: Space Physics, 2015, 120, 6276-6285.	0.8	17
84	Intensity of nightside MARSIS AIS surface reflections and implications for lowâ€eltitude ionospheric densities. Journal of Geophysical Research: Space Physics, 2015, 120, 3226-3239.	0.8	8
85	Statistics of Langmuir wave amplitudes observed inside Saturn's foreshock by the Cassini spacecraft. Journal of Geophysical Research: Space Physics, 2015, 120, 2531-2542.	0.8	9
86	A possible influence of the Great White Spot on Saturn kilometric radiation periodicity. Annales Geophysicae, 2014, 32, 1463-1476.	0.6	19
87	Effects of a strong ICME on the Martian ionosphere as detected by Mars Express and Mars Odyssey. Journal of Geophysical Research: Space Physics, 2014, 119, 5891-5908.	0.8	41
88	Dayside episodic ion outflow from Martian magnetic cusps and/or magnetosheath boundary motion associated with plasma oscillations. Geophysical Research Letters, 2014, 41, 3344-3350.	1.5	3
89	Electron density inside Enceladus plume inferred from plasma oscillations excited by dust impacts. Journal of Geophysical Research: Space Physics, 2014, 119, 3373-3380.	0.8	22
90	Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft. Journal of Geophysical Research: Space Physics, 2014, 119, 6294-6312.	0.8	40

#	Article	IF	CITATIONS
91	Enhanced ionization of the Martian nightside ionosphere during solar energetic particle events. Geophysical Research Letters, 2014, 41, 793-798.	1.5	25
92	Cassini multiâ€instrument assessment of Saturn's polar cap boundary. Journal of Geophysical Research: Space Physics, 2014, 119, 8161-8177.	0.8	31
93	Survey analysis of chorus intensity at Saturn. Journal of Geophysical Research: Space Physics, 2014, 119, 8415-8425.	0.8	19
94	Outflow and plasma acceleration in Titan's induced magnetotail: Evidence of magnetic tension forces. Journal of Geophysical Research: Space Physics, 2014, 119, 9992.	0.8	4
95	Oblique reflections in the Mars Express MARSIS data set: Stable density structures in the Martian ionosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 3944-3960.	0.8	41
96	MARSIS observations of the Martian nightside ionosphere dependence on solar wind conditions. Journal of Geophysical Research: Space Physics, 2014, 119, 4077-4093.	0.8	16
97	Saturn chorus latitudinal variations. Journal of Geophysical Research: Space Physics, 2014, 119, 4656-4667.	0.8	4
98	In Situ Observations of Interstellar Plasma with Voyager 1. Science, 2013, 341, 1489-1492.	6.0	276
99	Frequency drift of Saturn chorus emission compared to nonlinear theory. Journal of Geophysical Research: Space Physics, 2013, 118, 982-990.	0.8	10
100	Saturn chorus intensity variations. Journal of Geophysical Research: Space Physics, 2013, 118, 5592-5602.	0.8	18
101	Ordering of injection events within Saturnian SLS longitude and local time. Journal of Geophysical Research: Space Physics, 2013, 118, 832-838.	0.8	39
102	Enceladus auroral hiss observations: Implications for electron beam locations. Journal of Geophysical Research: Space Physics, 2013, 118, 160-166.	0.8	8
103	EVIDENCE FOR A SHOCK IN INTERSTELLAR PLASMA: <i>VOYAGER 1</i> . Astrophysical Journal Letters, 2013, 778, L3.	3.0	64
104	The plasma density distribution in the inner region of Saturn's magnetosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 2970-2974.	0.8	41
105	The influence of the secondary electrons induced by energetic electrons impacting the Cassini Langmuir probe at Saturn. Journal of Geophysical Research: Space Physics, 2013, 118, 7054-7073.	0.8	11
106	A new semiempirical model of the peak electron density of the Martian ionosphere. Geophysical Research Letters, 2013, 40, 5361-5365.	1.5	37
107	The Kilometric Radio Emission Spectrum: Relationship to Auroral Acceleration Processes. Geophysical Monograph Series, 2013, , 341-350.	0.1	71
108	Upper ionosphere of Mars is not axially symmetrical. Earth, Planets and Space, 2012, 64, 113-120.	0.9	19

#	Article	IF	CITATIONS
109	Properties of the magnetospheric backward wave oscillator inferred from CLUSTER measurements of VLF chorus elements. Journal of Geophysical Research, 2012, 117, .	3.3	9
110	Cassini observation of Jovian anomalous continuum radiation. Journal of Geophysical Research, 2012, 117, .	3.3	4
111	The detection of energetic electrons with the Cassini Langmuir probe at Saturn. Journal of Geophysical Research, 2012, 117, .	3.3	8
112	Identification of electron fieldâ€aligned current systems in Saturn's magnetosphere. Journal of Geophysical Research, 2012, 117, .	3.3	26
113	Saturn's inner magnetospheric convection pattern: Further evidence. Journal of Geophysical Research, 2012, 117, .	3.3	60
114	Flow stagnation at Enceladus: The effects of neutral gas and charged dust. Journal of Geophysical Research, 2012, 117, .	3.3	9
115	Chorus, ECH, and Z mode emissions observed at Jupiter and Saturn and possible electron acceleration. Journal of Geophysical Research, 2012, 117, .	3.3	49
116	The electromagnetic pickup of submicron-sized dust above Enceladus's northern hemisphere. Icarus, 2012, 219, 498-501.	1.1	12
117	Importance of plasma injection events for energization of relativistic electrons in the Jovian magnetosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	9
118	Dual-spacecraft observation of large-scale magnetic flux ropes in the Martian ionosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
119	Peak electron densities in Saturn's ionosphere derived from the low-frequency cutoff of Saturn lightning. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
120	Emission and propagation of Saturn kilometric radiation: Magnetoionic modes, beaming pattern, and polarization state. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	49
121	Dayside ionosphere of Mars: Empirical model based on data from the MARSIS instrument. Journal of Geophysical Research, 2011, 116, .	3.3	66
122	Auroral hiss, electron beams and standing Alfvén wave currents near Saturn's moon Enceladus. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	23
123	The search for Titan lightning radio emissions. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	26
124	ENA periodicities and their phase relations to SKR emissions at Saturn. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	9
125	Intense plasma wave emissions associated with Saturn's moon Rhea. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	32
126	The rotation of the plasmapause-like boundary at high latitudes in Saturn's magnetosphere and its relation to the eccentric rotation of the northern and southern auroral ovals. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	16

#	Article	IF	CITATIONS
127	Auroral electron distributions within and close to the Saturn kilometric radiation source region. Journal of Geophysical Research, 2011, 116, .	3.3	35
128	Nightside ionosphere of Mars studied with local electron densities: A general overview and electron density depressions. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	42
129	Influence of negatively charged plume grains on the structure of Enceladus' Alfvén wings: Hybrid simulations versus Cassini Magnetometer data. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56
130	Dusty plasma in the vicinity of Enceladus. Journal of Geophysical Research, 2011, 116, .	3.3	89
131	Analysis of Saturn kilometric radiation near a source center. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	25
132	Ion cyclotron harmonics in the Saturn downward current auroral region. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	6
133	Areas of enhanced ionization in the deep nightside ionosphere of Mars. Journal of Geophysical Research, 2011, 116, .	3.3	50
134	Overview of the plasma environment of Mars as seen by the radar sounder on Mars Express Spacecraft. , 2011, , .		0
135	A giant thunderstorm on Saturn. Nature, 2011, 475, 75-77.	13.7	116
136	On The Propagation And Modulation Of Electrostatic Solitary Waves Observed Near The Magnetopause On Cluster. AIP Conference Proceedings, 2011, , .	0.3	1
137	Radar absorption due to a corotating interaction region encounter with Mars detected by MARSIS. Icarus, 2010, 206, 95-103.	1.1	19
138	Phase relations between energetic neutral atom intensities and kilometric radio emissions at Saturn. Journal of Geophysical Research, 2010, 115, .	3.3	10
139	Cassini observations of narrowband radio emissions in Saturn's magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	26
140	Survey of Poynting flux of whistler mode chorus in the outer zone. Journal of Geophysical Research, 2010, 115, .	3.3	94
141	Characteristics of Langmuir electric field waveforms and power spectra exhibiting nonlinear behavior in Earth's foreshock. Journal of Geophysical Research, 2010, 115, .	3.3	14
142	Z mode waves as the source of Saturn narrowband radio emissions. Journal of Geophysical Research, 2010, 115, .	3.3	30
143	Waveâ€particle interactions in the equatorial source region of whistlerâ€mode emissions. Journal of Geophysical Research, 2010, 115, .	3.3	51
144	Electron beams as the source of whistlerâ€mode auroral hiss at Saturn. Geophysical Research Letters, 2010, 37, .	1.5	31

#	Article	IF	CITATIONS
145	Properties of Saturn kilometric radiation measured within its source region. Geophysical Research Letters, 2010, 37, .	1.5	74
146	Nonâ€detection of impulsive radio signals from lightning in Martian dust storms using the radar receiver on the Mars Express spacecraft. Geophysical Research Letters, 2010, 37, .	1.5	25
147	A plasmapauseâ€like density boundary at high latitudes in Saturn's magnetosphere. Geophysical Research Letters, 2010, 37, .	1.5	38
148	Modification of the plasma in the nearâ€vicinity of Enceladus by the enveloping dust. Geophysical Research Letters, 2010, 37, .	1.5	26
149	CMI growth rates for Saturnian kilometric radiation. Geophysical Research Letters, 2010, 37, .	1.5	33
150	The reversal of the rotational modulation rates of the north and south components of Saturn kilometric radiation near equinox. Geophysical Research Letters, 2010, 37, .	1.5	65
151	Overlapping ionospheric and surface echoes observed by the Mars Express radar sounder near the Martian terminator. Geophysical Research Letters, 2010, 37, .	1.5	11
152	Observations of the relationship between frequency sweep rates of chorus wave packets and plasma density. Journal of Geophysical Research, 2010, 115, .	3.3	48
153	Excitation of electron cyclotron harmonic waves in the inner Saturn magnetosphere within local plasma injections. Journal of Geophysical Research, 2010, 115, .	3.3	18
154	Dual periodicities in the rotational modulation of Saturn narrowband emissions. Journal of Geophysical Research, 2010, 115, .	3.3	24
155	Nightside ionosphere of Mars: Radar soundings by the Mars Express spacecraft. Journal of Geophysical Research, 2010, 115, .	3.3	71
156	The electron density of Saturn's magnetosphere. Annales Geophysicae, 2009, 27, 2971-2991.	0.6	73
157	Exploring the Martian subsurface of Athabasca using MARSIS radar data: Testing the volcanic and fluvial hypotheses for the origin of the morphology. , 2009, , .		0
158	The Mars express MARSIS sounder instrument. Planetary and Space Science, 2009, 57, 1975-1986.	0.9	134
159	Is the Martian water table hidden from radar view?. Geophysical Research Letters, 2009, 36, .	1.5	30
160	Discovery of a northâ€south asymmetry in Saturn's radio rotation period. Geophysical Research Letters, 2009, 36, .	1.5	143
161	A northâ€south difference in the rotation rate of auroral hiss at Saturn: Comparison to Saturn's kilometric radio emission. Geophysical Research Letters, 2009, 36, .	1.5	61
162	Electron densities in Jupiter's outer magnetosphere determined from Voyager 1 and 2 plasma wave spectra. Journal of Geophysical Research, 2009, 114, .	3.3	26

#	Article	IF	CITATIONS
163	Elliptical polarization of Saturn Kilometric Radiation observed from high latitudes. Journal of Geophysical Research, 2009, 114, .	3.3	36
164	Oblique lower band chorus waves: Time shifts between discrete elements observed by the Cluster spacecraft. Journal of Geophysical Research, 2009, 114, .	3.3	15
165	Oblique propagation of whistler mode waves in the chorus source region. Journal of Geophysical Research, 2009, 114, .	3.3	129
166	Steep, transient density gradients in the Martian ionosphere similar to the ionopause at Venus. Journal of Geophysical Research, 2009, 114, .	3.3	59
167	Sounding the subsurface of Athabasca Valles using MARSIS radar data: Exploring the volcanic and fluvial hypotheses for the origin of the rafted plate terrain. Journal of Geophysical Research, 2009, 114, .	3.3	19
168	lonospheric storms on Mars: Impact of the corotating interaction region. Geophysical Research Letters, 2009, 36, .	1.5	61
169	Detecting nanoparticles at radio frequencies: Jovian dust stream impacts on Cassini/RPWS. Geophysical Research Letters, 2009, 36, .	1.5	49
170	Electron density dropout near Enceladus in the context of waterâ€vapor and waterâ€ice. Geophysical Research Letters, 2009, 36, .	1.5	42
171	Propagation of unducted whistlers from their source lightning: A case study. Journal of Geophysical Research, 2009, 114, .	3.3	45
172	Source locations of narrowband radio emissions detected at Saturn. Journal of Geophysical Research, 2009, 114, .	3.3	38
173	A diffusive equilibrium model for the plasma density in Saturn's magnetosphere. Journal of Geophysical Research, 2009, 114, .	3.3	85
174	Analysis of narrowband emission observed in the Saturn magnetosphere. Journal of Geophysical Research, 2009, 114, .	3.3	24
175	The search for life in the solar system. Transactions of the American Clinical and Climatological Association, 2009, 120, 299-325.	0.9	2
176	Atmospheric Electricity at Saturn. Space Science Reviews, 2008, 137, 271-285.	3.7	44
177	Intense plasma waves at and near the solar wind termination shock. Nature, 2008, 454, 78-80.	13.7	54
178	Gyro-resonant electron acceleration atÂJupiter. Nature Physics, 2008, 4, 301-304.	6.5	84
179	Mass unloading along the inner edge of the Enceladus plasma torus. Geophysical Research Letters, 2008, 35, .	1.5	16
180	Analysis of plasma waves observed within local plasma injections seen in Saturn's magnetosphere. Journal of Geophysical Research, 2008, 113, .	3.3	51

#	Article	IF	CITATIONS
181	An update to a Saturnian longitude system based on kilometric radio emissions. Journal of Geophysical Research, 2008, 113, .	3.3	148
182	Variations in the chorus source location deduced from fluctuations of the ambient magnetic field: Comparison of Cluster data and the backward wave oscillator model. Journal of Geophysical Research, 2008, 113, .	3.3	10
183	Saturn kilometric radiation: Average and statistical properties. Journal of Geophysical Research, 2008, 113, .	3.3	98
184	MARSIS subsurface radar investigations of the South Polar reentrant Chasma Australe. Journal of Geophysical Research, 2008, 113, .	3.3	13
185	Identification of Saturn's magnetospheric regions and associated plasma processes: Synopsis of Cassini observations during orbit insertion. Reviews of Geophysics, 2008, 46, .	9.0	23
186	Atmospheric Electricity at Saturn. Space Sciences Series of ISSI, 2008, , 271-285.	0.0	3
187	Structure and dynamics of the solar wind/ionosphere interface on Mars: MEXâ€ASPERAâ€3 and MEXâ€MARSIS observations. Geophysical Research Letters, 2008, 35, .	1.5	74
188	Transient layers in the topside ionosphere of Mars. Geophysical Research Letters, 2008, 35, .	1.5	57
189	Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations. Journal of Geophysical Research, 2008, 113, .	3.3	97
190	Multiâ€instrument analysis of electron populations in Saturn's magnetosphere. Journal of Geophysical Research, 2008, 113, .	3.3	342
191	Observations of chorus at Saturn using the Cassini Radio and Plasma Wave Science instrument. Journal of Geophysical Research, 2008, 113, .	3.3	60
192	Variation of the Martian ionospheric electron density from Mars Express radar soundings. Journal of Geophysical Research, 2008, 113, .	3.3	131
193	Plasma environment of Mars as observed by simultaneous MEXâ€ASPERAâ€3 and MEXâ€MARSIS observations. Journal of Geophysical Research, 2008, 113, .	3.3	54
194	MARSIS data inversion approach: Preliminary results. , 2008, , .		11
195	Electrostatic Waves Observed At and Near the Solar Wind Termination Shock By Voyager 2. AIP Conference Proceedings, 2008, , .	0.3	1
196	Analysis of plasma waves observed in the inner Saturn magnetosphere. Annales Geophysicae, 2008, 26, 2631-2644.	0.6	16
197	The Life and Accomplishments of James A. Van Allen (1914–2006). IEEE Transactions on Plasma Science, 2007, 35, 745-747.	0.6	0
198	The Variable Rotation Period of the Inner Region of Saturn's Plasma Disk. Science, 2007, 316, 442-445.	6.0	223

6

#	Article	IF	CITATIONS
199	Formation of VLF chorus frequency spectrum: Cluster data and comparison with the backward wave oscillator model. Geophysical Research Letters, 2007, 34, .	1.5	29
200	Subsurface Radar Sounding of the South Polar Layered Deposits of Mars. Science, 2007, 316, 92-95.	6.0	330
201	A Saturnian longitude system based on a variable kilometric radiation period. Geophysical Research Letters, 2007, 34, .	1.5	117
202	Possible eigenmode trapping in density enhancements in Saturn's inner magnetosphere. Geophysical Research Letters, 2007, 34, .	1.5	4
203	Are Saturn electrostatic discharges really superbolts? A temporal dilemma. Geophysical Research Letters, 2007, 34, .	1.5	18
204	Multispacecraft observations of chorus dispersion and source location. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	17
205	Chorus source properties that produce time shifts and frequency range differences observed on different Cluster spacecraft. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	35
206	Vertical sheets of dense plasma in the topside Martian ionosphere. Journal of Geophysical Research, 2007, 112, .	3.3	33
207	Observation of similar radio signatures at Saturn and Jupiter: Implications for the magnetospheric dynamics. Geophysical Research Letters, 2007, 34, .	1.5	41
208	Magnetic signatures of plasmaâ€depleted flux tubes in the Saturnian inner magnetosphere. Geophysical Research Letters, 2007, 34, .	1.5	49
209	Far plasma wake of Titan from the RPWS observations: A case study. Geophysical Research Letters, 2007, 34, .	1.5	22
210	Plasma environment in the wake of Titan from hybrid simulation: A case study. Geophysical Research Letters, 2007, 34, .	1.5	39
211	Nondetection of Titan lightning radio emissions with Cassini/RPWS after 35 close Titan flybys. Geophysical Research Letters, 2007, 34, .	1.5	21
212	Influence of Saturnian moons on Saturn kilometric radiation. Journal of Geophysical Research, 2007, 112, .	3.3	23
213	Polarization measurements of Saturn Electrostatic Discharges with Cassini/RPWS below a frequency of 2 MHz. Journal of Geophysical Research, 2007, 112, .	3.3	6
214	Analysis of a giant lightning storm on Saturn. Icarus, 2007, 190, 528-544.	1.1	78
215	Observations of Vertical Reflections from the Topside Martian Ionosphere. Space Science Reviews, 2007, 126, 373-388.	3.7	47

Observations of Vertical Reflections from the Topside Martian Ionosphere. , 2007, , 373-388.

#	Article	IF	CITATIONS
217	Electrostatic solitary structures observed at Saturn. Geophysical Research Letters, 2006, 33, .	1.5	25
218	Changing electrical nature of Saturn's rings: Implications for spoke formation. Geophysical Research Letters, 2006, 33, .	1.5	8
219	Whistler mode auroral hiss emissions observed near Jupiter's moon Io. Journal of Geophysical Research, 2006, 111, .	3.3	6
220	Whistler-mode auroral hiss emissions observed near Saturn's B ring. Journal of Geophysical Research, 2006, 111, .	3.3	15
221	Propagation of whistler mode chorus to low altitudes: Spacecraft observations of structured ELF hiss. Journal of Geophysical Research, 2006, 111, .	3.3	106
222	Solar control of radar wave absorption by the Martian ionosphere. Geophysical Research Letters, 2006, 33, .	1.5	50
223	Discrimination between Jovian radio emissions and Saturn electrostatic discharges. Geophysical Research Letters, 2006, 33, .	1.5	5
224	First whistler observed in the magnetosphere of Saturn. Geophysical Research Letters, 2006, 33, .	1.5	32
225	A simple scale height model of the electron density in Saturn's plasma disk. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	62
226	Striated auroral kilometric radiation emission: A remote tracer of ion solitary structures. Journal of Geophysical Research, 2006, 111, .	3.3	31
227	Magnetically controlled structures in the ionosphere of Mars. Journal of Geophysical Research, 2006, 111, .	3.3	90
228	The Interaction of the Atmosphere of Enceladus with Saturn's Plasma. Science, 2006, 311, 1409-1412.	6.0	176
229	Plasma waves associated with the termination shock. AIP Conference Proceedings, 2006, , .	0.3	1
230	The local interstellar magnetic field direction from direction-finding measurements of heliospheric 2–3 kHz radio emissions. AIP Conference Proceedings, 2006, , .	0.3	16
231	James A. Van Allen (1914–2006). Nature, 2006, 443, 158-158.	13.7	0
232	Saturn lightning recorded by Cassini/RPWS in 2004. Icarus, 2006, 183, 135-152.	1.1	57
233	A pre-shock event at Jupiter on 30 January 2001. Planetary and Space Science, 2006, 54, 200-211.	0.9	3
234	Cassini UVIS observations of Jupiter's auroral variability. Icarus, 2005, 178, 312-326.	1.1	39

#	Article	IF	CITATIONS
235	Electron Plasma Oscillations Upstream of the Solar Wind Termination Shock. Science, 2005, 309, 2025-2027.	6.0	72
236	Cassini Measurements of Cold Plasma in the Ionosphere of Titan. Science, 2005, 308, 986-989.	6.0	178
237	Radar Soundings of the Ionosphere of Mars. Science, 2005, 310, 1929-1933.	6.0	237
238	Radio and Plasma Wave Observations at Saturn from Cassini's Approach and First Orbit. Science, 2005, 307, 1255-1259.	6.0	236
239	Radar Soundings of the Subsurface of Mars. Science, 2005, 310, 1925-1928.	6.0	327
240	Drifting field-aligned density structures in the night-side polar cap. Geophysical Research Letters, 2005, 32, .	1.5	5
241	On the possibility of fast neutral production of the inner Io torus. Journal of Geophysical Research, 2005, 110, .	3.3	2
242	Whistlers observed by the Cluster spacecraft outside the plasmasphere. Journal of Geophysical Research, 2005, 110, .	3.3	13
243	Detecting sub-glacial aquifers in the north polar layered deposits with Mars Express/MARSIS. Geophysical Research Letters, 2005, 32, .	1.5	7
244	High spectral and temporal resolution observations of Saturn kilometric radiation. Geophysical Research Letters, 2005, 32, .	1.5	16
245	Cassini observations of the thermal plasma in the vicinity of Saturn's main rings and the F and G rings. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	65
246	The inner magnetosphere of Saturn: Cassini RPWS cold plasma results from the first encounter. Geophysical Research Letters, 2005, 32, .	1.5	67
247	Electrostatic solitary structures associated with the November 10, 2003, interplanetary shock at 8.7 AU. Geophysical Research Letters, 2005, 32, .	1.5	32
248	A nightside source of Saturn's kilometric radiation: Evidence for an inner magnetosphere energy driver. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	13
249	Equatorial electron density measurements in Saturn's inner magnetosphere. Geophysical Research Letters, 2005, 32, .	1.5	69
250	On the width-amplitude inequality of electron phase space holes. Journal of Geophysical Research, 2005, 110, .	3.3	46
251	Narrowband Z-mode emissions interior to Saturn's plasma torus. Journal of Geophysical Research, 2005, 110, .	3.3	11
252	The Cassini Radio and Plasma Wave Investigation. Space Science Reviews, 2004, 114, 395-463.	3.7	455

#	Article	IF	CITATIONS
253	A microscopic and nanoscopic view of storm-time chorus on 31 March 2001. Geophysical Research Letters, 2004, 31, .	1.5	136
254	Remote sensing of possible plasma density bubbles in the inner Jovian dayside magnetosphere. Journal of Geophysical Research, 2004, 109, .	3.3	18
255	New observations from Cassini and Ulysses of Jovian VLF radio emissions. Journal of Geophysical Research, 2004, 109, .	3.3	18
256	In-flight calibration of the Cassini-Radio and Plasma Wave Science (RPWS) antenna system for direction-finding and polarization measurements. Journal of Geophysical Research, 2004, 109, .	3.3	39
257	Simultaneous observations of Jovian quasi-periodic radio emissions by the Galileo and Cassini spacecraft. Journal of Geophysical Research, 2004, 109, .	3.3	29
258	Cluster measurements of rapidly moving sources of ELF/VLF chorus. Journal of Geophysical Research, 2004, 109, .	3.3	31
259	The dependence of Langmuir wave amplitudes on position in Earth's foreshock. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	18
260	Correction to "Transverse dimensions of chorus in the source region― Geophysical Research Letters, 2004, 31, .	1.5	0
261	The Cassini Radio and Plasma Wave Investigation. , 2004, , 395-463.		14
262	Transverse dimensions of chorus in the source region. Geophysical Research Letters, 2003, 30, .	1.5	114
263	Cassini plasma spectrometer measurements of Jovian bow shock structure. Journal of Geophysical Research, 2003, 108, .	3.3	19
264	Whistler-mode excitation and electron scattering during an interchange event near Io. Geophysical Research Letters, 2003, 30, .	1.5	31
265	The return of the heliospheric 2-3 kHz radio emission during solar cycle 23. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	37
266	Near-source and remote observations of kilometric continuum radiation from multispacecraft observations. Journal of Geophysical Research, 2003, 108, .	3.3	14
267	On the source location of low-frequency heliospheric radio emissions. Journal of Geophysical Research, 2003, 108, .	3.3	58
268	Locations of auroral kilometric radiation bursts inferred from multispacecraft wideband Cluster VLBI observations. 1: Description of technique and initial results. Journal of Geophysical Research, 2003, 108, .	3.3	22
269	Spatio-temporal structure of storm-time chorus. Journal of Geophysical Research, 2003, 108, .	3.3	363
270	Electric Fluctuations and Ion Isotropy. AIP Conference Proceedings, 2003, , .	0.3	0

#	Article	IF	CITATIONS
271	Spatiotemporal variability and propagation of equatorial noise observed by Cluster. Journal of Geophysical Research, 2002, 107, SMP 43-1-SMP 43-8.	3.3	133
272	Electrostatic electron cyclotron waves generated by low-energy electron beams. Journal of Geophysical Research, 2002, 107, SMP 8-1.	3.3	20
273	Source characteristics of ELF/VLF chorus. Journal of Geophysical Research, 2002, 107, SMP 10-1-SMP 10-17.	3.3	128
274	Propagation of auroral hiss at high altitudes. Geophysical Research Letters, 2002, 29, 119-1-119-4.	1.5	39
275	Magnetic component of narrowband ion cyclotron waves in the auroral zone. Journal of Geophysical Research, 2002, 107, SMP 17-1-SMP 17-14.	3.3	80
276	Control of Jupiter's radio emission and aurorae by the solar wind. Nature, 2002, 415, 985-987.	13.7	171
277	The dusk flank of Jupiter's magnetosphere. Nature, 2002, 415, 991-994.	13.7	44
278	lon isotropy and ion resonant waves in the solar wind: Cassini observations. Geophysical Research Letters, 2001, 28, 87-90.	1.5	7
279	Propagation analysis of plasmaspheric hiss using Polar PWI measurements. Geophysical Research Letters, 2001, 28, 1127-1130.	1.5	66
280	An overview of observations by the Cassini radio and plasma wave investigation at Earth. Journal of Geophysical Research, 2001, 106, 30239-30252.	3.3	15
281	Wave normal and Poynting vector calculations using the Cassini radio and plasma wave instrument. Journal of Geophysical Research, 2001, 106, 30253-30269.	3.3	16
282	Control of Jovian radio emission by Callisto. Geophysical Research Letters, 2001, 28, 3047-3050.	1.5	19
283	Correction to "lon isotropy and ion resonant waves in the solar wind: Cassini observations― Geophysical Research Letters, 2001, 28, 4061-4061.	1.5	0
284	First results from the Cluster wideband plasma wave investigation. Annales Geophysicae, 2001, 19, 1259-1272.	0.6	60
285	Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning. Nature, 2001, 409, 313-315.	13.7	79
286	Plasma densities in the vicinity of Callisto from Galileo plasma wave observations. Geophysical Research Letters, 2000, 27, 1867-1870.	1.5	33
287	Implications of depleted flux tubes in the Jovian magnetosphere. Geophysical Research Letters, 2000, 27, 3133-3136.	1.5	24
288	Local time dependence of Jovian radio emissions observed by Galileo. Geophysical Research Letters, 1999, 26, 569-572.	1.5	7

#	Article	IF	CITATIONS
289	Chorus source locations from VLF Poynting flux measurements with the Polar spacecraft. Geophysical Research Letters, 1998, 25, 4063-4066.	1.5	216
290	Control of Jovian radio emission by Ganymede. Geophysical Research Letters, 1998, 25, 4281-4284.	1.5	21
291	Plasma waves in the dayside polar cap boundary layer: Bipolar and monopolar electric pulses and whistler mode waves. Geophysical Research Letters, 1998, 25, 4117-4120.	1.5	99
292	Second harmonic hectometric radio emission at Jupiter. Geophysical Research Letters, 1998, 25, 4425-4428.	1.5	4
293	Direction-finding measurements of heliospheric 2-3 kHz radio emissions. Geophysical Research Letters, 1998, 25, 4433-4436.	1.5	19
294	Radio emissions observed by Galileo near Io. Geophysical Research Letters, 1998, 25, 25-28.	1.5	7
295	Galileo plasma wave observations near Europa. Geophysical Research Letters, 1998, 25, 237-240.	1.5	30
296	Auroral kilometric radiation and the auroral electrojet index for the January 1997 magnetic cloud event. Geophysical Research Letters, 1998, 25, 3027-3030.	1.5	11
297	The January 10, 1997 auroral hot spot, horseshoe aurora and first substorm: A CME loop?. Geophysical Research Letters, 1998, 25, 3047-3050.	1.5	39
298	An unusual rotationally modulated attenuation band in the Jovian hectometric radio emission spectrum. Geophysical Research Letters, 1998, 25, 1841-1844.	1.5	20
299	Principles of space plasma wave instrument design. Geophysical Monograph Series, 1998, , 121-136.	0.1	39
300	A determination of the source of Jovian hectometric radiation via occultation by Ganymede. Geophysical Research Letters, 1997, 24, 1171-1174.	1.5	17
301	Galileo evidence for rapid interchange transport in the Io torus. Geophysical Research Letters, 1997, 24, 2131-2134.	1.5	109
302	Enhanced whistler-mode emissions: Signatures of interchange motion in the Io torus. Geophysical Research Letters, 1997, 24, 2123-2126.	1.5	67
303	Ganymede: A new radio source. Geophysical Research Letters, 1997, 24, 2167-2170.	1.5	32
304	Micron-sized dust particles detected in the outer solar system by the Voyager 1 and 2 plasma wave instruments. Geophysical Research Letters, 1997, 24, 3125-3128.	1.5	91
305	Absence of a magnetic-field signature in plasma-wave observations at Callisto. Nature, 1997, 387, 261-262.	13.7	20
306	THE WIDE-BAND PLASMA WAVE INVESTIGATION. Space Science Reviews, 1997, 79, 195-208.	3.7	82

#	Article	IF	CITATIONS
307	The relationship between ELF-VHF waves and magnetic shear at the dayside magnetopause. Geophysical Research Letters, 1996, 23, 773-776.	1.5	20
308	Micron-sized particles detected in the vicinity of Jupiter by the Voyager plasma wave instruments. Geophysical Research Letters, 1996, 23, 997-1000.	1.5	24
309	Observations and analyses of heliospheric $2\hat{a}\in$ 3 kHz radio emissions. AIP Conference Proceedings, 1996, , .	0.3	0
310	Radio emissions from the outer heliosphere. Space Science Reviews, 1996, 78, 53-66.	3.7	42
311	Evidence for a magnetosphere at Ganymede from plasma-wave observations by the Galileo spacecraft. Nature, 1996, 384, 535-537.	13.7	152
312	The Polar plasma wave instrument. Space Science Reviews, 1995, 71, 597-622.	3.7	147
313	Distances to the termination shock and heliopause from a simulation analysis of the 1992-93 heliospheric radio emission event. Geophysical Research Letters, 1995, 22, 651-654.	1.5	35
314	Beat-type Langmuir wave emissions associated with a type III solar radio burst: Evidence of parametric decay. Geophysical Research Letters, 1995, 22, 1161-1164.	1.5	45
315	On a remarkable similarity between the propagation of whistlers and the bow wave of a ship. Geophysical Research Letters, 1995, 22, 1865-1868.	1.5	11
316	The whistler-mode bow wave of an asteroid. Journal of Geophysical Research, 1995, 100, 21623-21629.	3.3	25
317	Analysis of electromagnetic wave direction finding performed by spaceborne antennas using singular-value decomposition techniques. Radio Science, 1995, 30, 1699-1712.	0.8	34
318	A revised analysis of micron-sized particles detected near Saturn by the Voyager 2 plasma wave instrument. Journal of Geophysical Research, 1994, 99, 2261.	3.3	33
319	Evidence that Jupiter is not the source of the 2-3 kHz heliospheric radiation. Geophysical Research Letters, 1994, 21, 1571-1574.	1.5	12
320	Fine structure of Langmuir waves observed upstream of the bow shock at Venus. Journal of Geophysical Research, 1994, 99, 13363.	3.3	40
321	A search for life on Earth from the Galileo spacecraft. Nature, 1993, 365, 715-721.	13.7	408
322	Radio Emission from the Heliopause Triggered by an Interplanetary Shock. Science, 1993, 262, 199-203.	6.0	218
323	Plasma waves as indicators of the termination shock. Journal of Geophysical Research, 1993, 98, 15129-15136.	3.3	18
324	High resolution measurements of density structures in the Jovian plasma sheet. Geophysical Research Letters, 1992, 19, 2281-2284.	1.5	13

#	Article	IF	CITATIONS
325	Outer heliospheric radio emissions: 2. Foreshock source models. Journal of Geophysical Research, 1992, 97, 6245-6259.	3.3	23
326	Outer heliospheric radio emissions: 1. Constraints on emission processes and the source region. Journal of Geophysical Research, 1992, 97, 6235-6244.	3.3	26
327	Plasma waves in planetary magnetospheres. Journal of Geophysical Research, 1991, 96, 18977-18991.	3.3	68
328	Plasma wave generation near the inner heliospheric shock. Geophysical Research Letters, 1991, 18, 357-360.	1.5	24
329	Lowâ€frequency radio emissions in the outer heliosphere. Journal of Geophysical Research, 1991, 96, 3801-3806.	3.3	19
330	New observations of the low frequency interplanetary radio emissions. Geophysical Research Letters, 1991, 18, 1801-1804.	1.5	32
331	Micronâ€sized particles detected near Neptune by the Voyager 2 plasma wave instrument. Journal of Geophysical Research, 1991, 96, 19177-19186.	3.3	40
332	Lightning and Plasma Wave Observations from the Galileo Flyby of Venus. Science, 1991, 253, 1522-1525.	6.0	71
333	Cyclotron maser radiation from planetary magnetospheres (abstract). Review of Scientific Instruments, 1990, 61, 3070-3070.	0.6	3
334	Whistlers in Neptune's magnetosphere: Evidence of atmospheric lightning. Journal of Geophysical Research, 1990, 95, 20967-20976.	3.3	91
335	Lowâ€frequency radio emissions at Neptune. Geophysical Research Letters, 1990, 17, 1649-1652.	1.5	18
336	Comparison of plasma wave measurements in the bow shocks at Earth, Jupiter, Saturn, Uranus and Neptune. Geophysical Research Letters, 1990, 17, 1653-1656.	1.5	15
337	Electrostatic electron and ion cyclotron harmonic waves in Neptune's magnetosphere. Geophysical Research Letters, 1990, 17, 1657-1660.	1.5	22
338	Merging of aircraft vortex trails: Similarities to magnetic field merging. Geophysical Research Letters, 1989, 16, 17-20.	1.5	3
339	Coherent Cerenkov radiation from the Spacelab 2 electron beam. Journal of Geophysical Research, 1989, 94, 443-452.	3.3	52
340	First Plasma Wave Observations at Neptune. Science, 1989, 246, 1494-1498.	6.0	91
341	Plasma wave turbulence around the shuttle: Results from the Spacelabâ€⊋ flight. Geophysical Research Letters, 1988, 15, 760-763.	1.5	28
342	An analysis of whistler mode radiation from the Spacelab 2 electron beam. Journal of Geophysical Research, 1988, 93, 153-161.	3.3	67

#	Article	IF	CITATIONS
343	Electron density depletions in the nightside auroral zone. Journal of Geophysical Research, 1988, 93, 1871-1895.	3.3	168
344	Pulsed electron beam emission in space Journal of Geomagnetism and Geoelectricity, 1988, 40, 1221-1233.	0.8	20
345	Observed beaming of terrestrial myriametric radiation. Nature, 1987, 328, 391-395.	13.7	53
346	Longâ€period dynamic spectrograms of lowâ€frequency interplanetary radio emissions. Geophysical Research Letters, 1987, 14, 49-52.	1.5	55
347	Electromagnetic fields from pulsed electron beam experiments in space: Spacelabâ€2 results. Geophysical Research Letters, 1987, 14, 1015-1018.	1.5	23
348	Micronâ€ s ized particle impacts detected near Uranus by the Voyager 2 Plasma Wave Instrument. Journal of Geophysical Research, 1987, 92, 14959-14968.	3.3	59
349	Whistlerâ€mode radiation from the Spacelab 2 electron beam. Geophysical Research Letters, 1986, 13, 225-228.	1.5	81
350	Dust particles detected near Giacobiniâ€Zinner by the ICE Plasma Wave Instrument. Geophysical Research Letters, 1986, 13, 291-294.	1.5	49
351	AKR signal increases caused by triggering. Geophysical Research Letters, 1986, 13, 370-372.	1.5	7
352	Plasma waves associated with the first AMPTE magnetotail barium release. Geophysical Research Letters, 1986, 13, 644-647.	1.5	27
353	Satellite interferometric measurements of auroral kilometric radiation. Geophysical Research Letters, 1986, 13, 1105-1108.	1.5	23
354	First Plasma Wave Observations at Uranus. Science, 1986, 233, 106-109.	6.0	111
355	Plasma waves and instabilities. Geophysical Monograph Series, 1985, , 207-224.	0.1	82
356	Plasma waves associated with the AMPTE artificial comet. Geophysical Research Letters, 1985, 12, 851-854.	1.5	43
357	Detection of a radio emission at 3 kHz in the outer heliosphere. Nature, 1984, 312, 27-31.	13.7	172
358	Short wavelength ion waves upstream of the Earth's bow shock. Journal of Geophysical Research, 1984, 89, 91-103.	3.3	76
359	Correlation of auroral hiss and upward electron beams near the polar cusp. Journal of Geophysical Research, 1984, 89, 925-935.	3.3	109
360	Narrowband electromagnetic emissions from Jupiter's magnetosphere. Nature, 1983, 302, 385-388.	13.7	46

#	Article	IF	CITATIONS
361	Auroral hiss, <i>Z</i> mode radiation, and auroral kilometric radiation in the polar magnetosphere: DE 1 observations. Journal of Geophysical Research, 1983, 88, 329-340.	3.3	231
362	Polar cap electron densities from DE 1 plasma wave observations. Journal of Geophysical Research, 1983, 88, 10123-10136.	3.3	106
363	Voyager 2 Plasma Wave Observations at Saturn. Science, 1982, 215, 587-594.	6.0	115
364	Chorus-related electrostatic bursts in the Earth's outer magnetosphere. Nature, 1982, 295, 46-48.	13.7	36
365	Plasma Waves Near Saturn: Initial Results from Voyager 1. Science, 1981, 212, 235-239.	6.0	166
366	Plasma waves associated with energetic particles streaming into the solar wind from the Earth's bow shock. Journal of Geophysical Research, 1981, 86, 4493-4510.	3.3	190
367	Jupiter tail phenomena upstream from Saturn. Nature, 1981, 292, 585-586.	13.7	55
368	Narrowband electromagnetic emissions from Saturn's magnetosphere. Nature, 1981, 292, 733-737.	13.7	61
369	Control of Saturn's kilometric radiation by Dione. Nature, 1981, 292, 742-745.	13.7	28
370	Plasma wave turbulence at planetary bow shocks. Nature, 1981, 292, 747-750.	13.7	22
371	An Upper Bound to the Lightning Flash Rate in Jupiter's Atmosphere. Science, 1981, 213, 684-685.	6.0	28
372	Plasma Oscillations and the Emissivity of Type III Radio Bursts. Symposium - International Astronomical Union, 1980, 86, 369-379.	0.1	7
373	Electrostatic waves in the Jovian magnetosphere. Geophysical Research Letters, 1980, 7, 57-60.	1.5	80
374	Jupiter Plasma Wave Observations: An Initial Voyager 1 Overview. Science, 1979, 204, 991-995.	6.0	208
375	Auroral hiss observed near the Io plasma torus. Nature, 1979, 280, 767-770.	13.7	41
376	Plasma wave turbulence at Jupiter's bow shock. Nature, 1979, 280, 796-797.	13.7	15
377	Whistlers observed by Voyager 1: Detection of lightning on Jupiter. Geophysical Research Letters, 1979, 6, 511-514.	1.5	137
378	Pitchâ€angle diffusion by whistler mode waves near the Io plasma torus. Geophysical Research Letters, 1979, 6, 653-656.	1.5	33

#	Article	IF	CITATIONS
379	Plasma wave turbulence at the magnetopause: Observations from ISEE 1 and 2. Journal of Geophysical Research, 1979, 84, 7043-7058.	3.3	175
380	The ISEE-1 and ISEE-2 Plasma Wave Investigation. , 1978, 16, 225-230.		98
381	On the polarization and origin of auroral kilometric radiation. Journal of Geophysical Research, 1978, 83, 689-696.	3.3	95
382	A region of intense plasma wave turbulence on auroral field lines. Journal of Geophysical Research, 1977, 82, 1031-1050.	3.3	235
383	Direction-finding measurements of auroral kilometric radiation. Journal of Geophysical Research, 1975, 80, 2764-2770.	3.3	169
384	Electrostatic noise bands associated with the electron gyrofrequency and plasma frequency in the outer magnetosphere. Journal of Geophysical Research, 1975, 80, 4259-4271.	3.3	121
385	The Earth as a radio source: Terrestrial kilometric radiation. Journal of Geophysical Research, 1974, 79, 4227-4238.	3.3	512
386	Plasma wave observations near the plasmapause with the S³-A satellite. Journal of Geophysical Research, 1973, 78, 4756-4764.	3.3	47
387	Electromagnetic radiation trapped in the magnetosphere above the plasma frequency. Journal of Geophysical Research, 1973, 78, 8136-8149.	3.3	184
388	VLF hiss and related plasma observations in the polar magnetosphere. Journal of Geophysical Research, 1972, 77, 172-190.	3.3	214
389	Theory of the Injun 5 very-low-frequency Poynting flux measurements. Journal of Geophysical Research, 1971, 76, 972-977.	3.3	26
390	Color spectrograms of very-low-frequency Poynting flux data. Journal of Geophysical Research, 1971, 76, 3022-3033.	3.3	29
391	Ionospheric Observation of VLF Electrostatic Noise related to Harmonics of the Proton Gyrofrequency. Nature, 1969, 223, 605-606.	13.7	25
392	Initial observations of VLF electric and magnetic fields with the Injun 5 satellite. Journal of Geophysical Research, 1969, 74, 4631-4648.	3.3	88
393	VLF measurements of the Poynting Flux along the geomagnetic field with the Injun 5 satellite. Journal of Geophysical Research, 1969, 74, 5675-5687.	3.3	88
394	Microburst phenomena: 3. An association between microbursts and VLF chorus. Journal of Geophysical Research, 1968, 73, 2355-2362.	3.3	119
395	Fractional concentration of hydrogen ions in the ionosphere from VLF proton whistler measurement. Journal of Geophysical Research, 1966, 71, 47-59.	3.3	42
396	A satellite study of VLF hiss. Journal of Geophysical Research, 1966, 71, 5599-5615.	3.3	150

#	Article	IF	CITATIONS
397	Non-Eckersley-law Whistlers observed at Equatorial Latitudes with Satellite Injun 3. Nature, 1966, 210, 827-828.	13.7	1
398	Hook Whistler—a New Equatorial Whistler observed by Injun 3. Nature, 1966, 212, 1442-1443.	13.7	4
399	Ion cyclotron whistlers. Journal of Geophysical Research, 1965, 70, 1665-1688.	3.3	184
400	An Ion Gyrofrequency Phenomenon observed in Satellites. Nature, 1964, 204, 274-275.	13.7	56
401	High-latitude geophysical studies with satellite Injun 3: 1. Description of the satellite. Journal of Geophysical Research, 1964, 69, 1-12.	3.3	37
402	High-latitude geophysical studies with satellite Injun 3: 5. Very-low-frequency electromagnetic radiation. Journal of Geophysical Research, 1964, 69, 65-89.	3.3	138
403	VENUS subsurface ionosphere radar sounder: VENSiS. , 0, , .		0
404	Plasma Wave Observations at Earth, Jupiter, and Saturn. Geophysical Monograph Series, 0, , 415-430.	0.1	12
405	The Conductance of Auroral Magnetic Field Lines. Geophysical Monograph Series, 0, , 108-113.	0.1	5
406	An SLS4 Longitude System Based on a Tracking Filter Analysis of the Rotational Modulation of Saturn Kilometric Radiation. , 0, , .		43