
Dhimiter Bello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8331202/publications.pdf Version: 2024-02-01

DHIMITED RELLO

#	Article	IF	CITATIONS
1	Elevated Urinary Biomarkers of Oxidative Damage in Photocopier Operators following Acute and Chronic Exposures. Nanomaterials, 2022, 12, 715.	4.1	7
2	Estimation of Titanium Dioxide Intake by Diet and Stool Assessment among US Healthy Adults. Journal of Nutrition, 2022, 152, 1525-1537.	2.9	3
3	Prognostic serum biomarkers in cancer patients with COVID-19: A systematic review. Translational Oncology, 2022, 21, 101443.	3.7	5
4	Toxicity screening and ranking of diverse engineered nanomaterials using established hierarchical testing approaches with a complementary <i>in vivo</i> zebrafish model. Environmental Science: Nano, 2022, 9, 2726-2749.	4.3	2
5	Assessment of personal inhalation and skin exposures to polymeric methylene diphenyl diisocyanate during polyurethane fabric coating. Toxicology and Industrial Health, 2022, 38, 622-635.	1.4	5
6	Characterization and Quantitation of Personal Exposures to Epoxy Paints in Construction Using a Combination of Novel Personal Samplers and Analytical Techniques: CIP-10MI, Liquid Chromatography–Tandem Mass Spectrometry and Ion Chromatography. Annals of Work Exposures and Health, 2021, 65, 539-553.	1.4	2
7	Chronic upper airway and systemic inflammation from copier emitted particles in healthy operators at six Singaporean workplaces. NanoImpact, 2021, 22, 100325.	4.5	10
8	Urinary biomonitoring of occupational exposures to Bisphenol A Diglycidyl Ether (BADGE) – based epoxy resins among construction painters in metal structure coating. Environment International, 2021, 156, 106632.	10.0	10
9	Zinc Exposure Promotes Commensal-to-Pathogen Transition in Pseudomonas aeruginosa Leading to Mucosal Inflammation and Illness in Mice. International Journal of Molecular Sciences, 2021, 22, 13321.	4.1	8
10	Effects of ingested food-grade titanium dioxide, silicon dioxide, iron (III) oxide and zinc oxide nanoparticles on an in vitro model of intestinal epithelium: Comparison between monoculture vs. a mucus-secreting coculture model. NanoImpact, 2020, 17, 100209.	4.5	24
11	Pilot deep RNA sequencing of worker blood samples from Singapore printing industry for occupational risk assessment. NanoImpact, 2020, 19, 100248.	4.5	8
12	Mesoporous activated carbon shows superior adsorption affinity for 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in water. Npj Clean Water, 2020, 3, .	8.0	5
13	Exposures and urinary biomonitoring of aliphatic isocyanates in construction metal structure coating. International Journal of Hygiene and Environmental Health, 2020, 226, 113495.	4.3	10
14	Occupational Inhalation Exposures to Nanoparticles at Six Singapore Printing Centers. Environmental Science & Technology, 2020, 54, 2389-2400.	10.0	36
15	A 21-day sub-acute, whole-body inhalation exposure to printer-emitted engineered nanoparticles in rats: Exploring pulmonary and systemic effects. NanoImpact, 2019, 15, 100176.	4.5	16
16	Safer-by-design flame-sprayed silicon dioxide nanoparticles: the role of silanol content on ROS generation, surface activity and cytotoxicity. Particle and Fibre Toxicology, 2019, 16, 40.	6.2	48
17	Comprehensive Assessment of Short-Lived ROS and H ₂ O ₂ in Laser Printer Emissions: Assessing the Relative Contribution of Metal Oxides and Organic Constituents. Environmental Science & Technology, 2019, 53, 7574-7583.	10.0	25
18	Assessment and control of exposures to polymeric methylene diphenyl diisocyanate (pMDI) in spray polyurethane foam applicators. International Journal of Hygiene and Environmental Health, 2019, 222, 804-815.	4.3	17

#	Article	IF	CITATIONS
19	Evaluation of Disposable Protective Garments against Isocyanate Permeation and Penetration from Polyurethane Anticorrosion Coatings. Annals of Work Exposures and Health, 2019, 63, 592-603.	1.4	3
20	ls "nano safe to eat or not� A review of the state-of-the art in soft engineered nanoparticle (sENP) formulation and delivery in foods. Advances in Food and Nutrition Research, 2019, 88, 299-335.	3.0	13
21	Dilysine-Methylene Diphenyl Diisocyanate (MDI), a Urine Biomarker of MDI Exposure?. Chemical Research in Toxicology, 2019, 32, 557-565.	3.3	7
22	Inactivation of Hand Hygiene-Related Pathogens Using Engineered Water Nanostructures. ACS Sustainable Chemistry and Engineering, 2019, 7, 19761-19769.	6.7	13
23	A nano-carrier platform for the targeted delivery of nature-inspired antimicrobials using Engineered Water Nanostructures for food safety applications. Food Control, 2019, 96, 365-374.	5.5	37
24	Exposure to organophosphate flame retardants in spray polyurethane foam applicators: Role of dermal exposure. Environment International, 2018, 113, 55-65.	10.0	35
25	An integrated electrolysis – electrospray – ionization antimicrobial platform using Engineered Water Nanostructures (EWNS) for food safety applications. Food Control, 2018, 85, 151-160.	5.5	34
26	Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches. Journal of Hazardous Materials, 2018, 344, 549-557.	12.4	77
27	913â€Nanoparticle emission during cutting operation of carbon nanotube reinforced polycarbonate composites and recycling effect. , 2018, , .		0
28	Deep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers. Nanomaterials, 2018, 8, 731.	4.1	25
29	Markers of Oxidative Stress in the Exhaled Breath Condensate of Workers Handling Nanocomposites. Nanomaterials, 2018, 8, 611.	4.1	23
30	Testing of Disposable Protective Garments Against Isocyanate Permeation From Spray Polyurethane Foam Insulation. Annals of Work Exposures and Health, 2018, 62, 754-764.	1.4	8
31	Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Particle and Fibre Toxicology, 2018, 15, 29.	6.2	128
32	Dissolution Behavior and Biodurability of Ingested Engineered Nanomaterials in the Gastrointestinal Environment. ACS Nano, 2018, 12, 8115-8128.	14.6	81
33	Exposures to nanoparticles and fibers during injection molding and recycling of carbon nanotube reinforced polycarbonate composites. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 379-390.	3.9	15
34	Chronic upper airway inflammation and systemic oxidative stress from nanoparticles in photocopier operators: Mechanistic insights. NanoImpact, 2017, 5, 133-145.	4.5	26
35	Indoor Air Quality in Photocopy Centers, Nanoparticle Exposures at Photocopy Workstations, and the Need for Exposure Controls. Annals of Occupational Hygiene, 2017, 61, 110-122.	1.9	14
36	Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: state of science and future research needs. Critical Reviews in Toxicology, 2017, 47, 683-709.	3.9	56

#	Article	IF	CITATIONS
37	Biokinetics of engineered nano-TiO ₂ in rats administered by different exposure routes: implications for human health. Nanotoxicology, 2017, 11, 431-433.	3.0	22
38	Synergistic effects of engineered nanoparticles and organics released from laser printers using nano-enabled toners: potential health implications from exposures to the emitted organic aerosol. Environmental Science: Nano, 2017, 4, 2144-2156.	4.3	26
39	Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO ₂ production workers. Nanotoxicology, 2017, 11, 52-63.	3.0	51
40	Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Reviews on Environmental Health, 2017, 32, 193-200.	2.4	26
41	Investigation of nanoparticles emitted when injection molding neat and additive-filled polypropylene and polycarbonate. AIP Conference Proceedings, 2017, , .	0.4	2
42	Haemolytic activity of soil from areas of varying podoconiosis endemicity in Ethiopia. PLoS ONE, 2017, 12, e0177219.	2.5	8
43	Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites. Annals of Occupational Hygiene, 2016, 60, mev073.	1.9	19
44	Effects of Laser Printer–Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive <i>in Vitro</i> Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts. Environmental Health Perspectives, 2016, 124, 210-219.	6.0	64
45	Residual Isocyanates in Medical Devices and Products: A Qualitative and Quantitative Assessment. Environmental Health Insights, 2016, 10, EHI.S39149.	1.7	5
46	End-of-life thermal decomposition of nano-enabled polymers: effect of nanofiller loading and polymer matrix on by-products. Environmental Science: Nano, 2016, 3, 1293-1305.	4.3	31
47	Occupational dermal exposure to nanoparticles and nano-enabled products: Part 2, exploration of exposure processes and methods of assessment. International Journal of Hygiene and Environmental Health, 2016, 219, 503-512.	4.3	32
48	Occupational dermal exposure to nanoparticles and nano-enabled products: Part l—Factors affecting skin absorption. International Journal of Hygiene and Environmental Health, 2016, 219, 536-544.	4.3	56
49	Development of an Interception Glove Sampler for Skin Exposures to Aromatic Isocyanates. Annals of Occupational Hygiene, 2016, 60, 1092-1103.	1.9	10
50	The effects of recycling on the properties of carbon nanotube-filled polypropylene composites and worker exposures. Environmental Science: Nano, 2016, 3, 409-417.	4.3	27
51	Additive Impairment of Synaptic Signaling in Cultured Cortical Neurons by Exogenously-Applied Oligomerized Amyloid-β and Airborne Nanoparticles Generated during Photocopying. Journal of Alzheimer's Disease, 2015, 47, 49-54.	2.6	4
52	Consumer exposures to laser printer-emitted engineered nanoparticles: A case study of life-cycle implications from nano-enabled products. Nanotoxicology, 2015, 9, 760-768.	3.0	70
53	Implications of <i>in vitro</i> dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials. Nanotoxicology, 2015, 9, 871-885.	3.0	63
54	Occupational exposure to nanoparticles at commercial photocopy centers. Journal of Hazardous Materials, 2015, 298, 351-360.	12.4	63

#	Article	IF	CITATIONS
55	Development and characterization of an exposure platform suitable for physico-chemical, morphological and toxicological characterization of printer-emitted particles (PEPs). Inhalation Toxicology, 2014, 26, 400-408.	1.6	57
56	Screening for oxidative damage by engineered nanomaterials: a comparative evaluation of FRAS and DCFH. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	20
57	Nanomaterial induction of oxidative stress in lung epithelial cells and macrophages. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	11
58	High Resolution Characterization of Engineered Nanomaterial Dispersions in Complex Media Using Tunable Resistive Pulse Sensing Technology. ACS Nano, 2014, 8, 9003-9015.	14.6	55
59	Physicochemical and morphological characterisation of nanoparticles from photocopiers: implications for environmental health. Nanotoxicology, 2013, 7, 989-1003.	3.0	80
60	Nanoparticles from photocopiers induce oxidative stress and upper respiratory tract inflammation in healthy volunteers. Nanotoxicology, 2013, 7, 1014-1027.	3.0	100
61	Evaluation of cytotoxic, genotoxic and inflammatory responses of nanoparticles from photocopiers in three human cell lines. Particle and Fibre Toxicology, 2013, 10, 42.	6.2	67
62	Mapping the Biological Oxidative Damage of Engineered Nanomaterials. Small, 2013, 9, 1853-1865.	10.0	58
63	Toxicological effects of PM _{0.25–2.0} particles collected from a photocopy center in three human cell lines. Inhalation Toxicology, 2013, 25, 621-632.	1.6	24
64	Effects of copy center particles on the lungs: a toxicological characterization using a <i>Balb/c</i> mouse model. Inhalation Toxicology, 2013, 25, 498-508.	1.6	64
65	Harmonization of Measurement Strategies for Exposure to Manufactured Nano-Objects; Report of a Workshop. Annals of Occupational Hygiene, 2012, 56, 1-9.	1.9	80
66	Biological oxidative damage by carbon nanotubes: Fingerprint or footprint?. Nanotoxicology, 2012, 6, 61-76.	3.0	27
67	Screening for Oxidative Stress Elicited by Engineered Nanomaterials: Evaluation of Acellular DCFH Assay. Dose-Response, 2012, 10, dose-response.1.	1.6	30
68	Transferability of Aliphatic Isocyanates from Recently Applied Paints to the Skin of Auto Body Shop Workers. Journal of Occupational and Environmental Hygiene, 2012, 9, 699-711.	1.0	2
69	Understanding and correcting for carbon nanotube interferences with a commercial LDH cytotoxicity assay. Toxicology, 2012, 299, 99-111.	4.2	30
70	A laboratory comparison of analytical methods used for isocyanates. Analytical Methods, 2011, 3, 2478.	2.7	3
71	Characterization of Exposures to Airborne Nanoscale Particles During Friction Stir Welding of Aluminum. Annals of Occupational Hygiene, 2010, 54, 486-503.	1.9	27
72	Characterization of Exposures To Nanoscale Particles and Fibers During Solid Core Drilling of Hybrid Carbon Nanotube Advanced Composites. International Journal of Occupational and Environmental Health, 2010, 16, 434-450.	1.2	52

#	Article	IF	CITATIONS
73	Characterization of Exposures To Nanoscale Particles and Fibers During Solid Core Drilling of Hybrid Carbon Nanotube Advanced Composites. International Journal of Occupational and Environmental Health, 2010, 16, 434-450.	1.2	64
74	Skin Exposure to Aliphatic Polyisocyanates in the Auto Body Repair and Refinishing Industry: III. A Personal Exposure Algorithm. Annals of Occupational Hygiene, 2009, 53, 33-40.	1.9	15
75	Letters to the Editor. Journal of Occupational and Environmental Hygiene, 2009, 6, D82-D85.	1.0	1
76	Nanomaterials properties vs. biological oxidative damage: Implications for toxicity screening and exposure assessment. Nanotoxicology, 2009, 3, 249-261.	3.0	51
77	Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. Journal of Nanoparticle Research, 2009, 11, 231-249.	1.9	207
78	Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon, 2008, 46, 974-977.	10.3	93
79	Skin Exposure to Aliphatic Polyisocyanates in the Auto Body Repair and Refinishing Industry: II. A Quantitative Assessment. Annals of Occupational Hygiene, 2008, 52, 117-24.	1.9	51
80	Oxidative Stress as a Screening Metric of Potential Toxicity by Nanoparticles and Ariborne Particulate Matter. Inhalation Toxicology, 2008, 20, 895-895.	1.6	11
81	Comparison of Task-Based Exposure Metrics for an Epidemiologic Study of Isocyanate Inhalation Exposures Among Autobody Shop Workers. Journal of Occupational and Environmental Hygiene, 2008, 5, 588-598.	1.0	7
82	A Survey of Environmental and Occupational Work Practices in the Automotive Refinishing Industry of a Developing Country: Sonora, Mexico. International Journal of Occupational and Environmental Health, 2008, 14, 104-111.	1.2	11
83	Slow Curing of Aliphatic Polyisocyanate Paints in Automotive Refinishing: A Potential Source for Skin Exposure. Journal of Occupational and Environmental Hygiene, 2007, 4, 406-411.	1.0	25
84	Skin Exposure to Aliphatic Polyisocyanates in the Auto Body Repair and Refinishing Industry: A Qualitative Assessment. Annals of Occupational Hygiene, 2007, 51, 429-439.	1.9	27
85	Skin Exposure to Isocyanates: Reasons for Concern. Environmental Health Perspectives, 2007, 115, 328-335.	6.0	230
86	An FTIR investigation of isocyanate skin absorption using in vitro guinea pig skin. Journal of Environmental Monitoring, 2006, 8, 523.	2.1	28
87	Respiratory Protection from Isocyanate Exposure in the Autobody Repair and Refinishing Industry. Journal of Occupational and Environmental Hygiene, 2006, 3, 234-249.	1.0	38
88	A laboratory investigation of the effectiveness of various skin and surface decontaminants for aliphatic polyisocyanates. Journal of Environmental Monitoring, 2005, 7, 716.	2.1	12
89	Polyisocyanates in occupational environments: A critical review of exposure limits and metrics. American Journal of Industrial Medicine, 2004, 46, 480-491.	2.1	90
90	lsocyanate Exposures in Autobody Shop Work: The SPRAY Study. Journal of Occupational and Environmental Hygiene, 2004, 1, 570-581.	1.0	53