Mohammad Mahdi Hasani-Sadrabadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8331040/publications.pdf

Version: 2024-02-01

Монаммад Манді

#	Article	IF	CITATIONS
1	Immunomodulatory microneedle patch for periodontal tissue regeneration. Matter, 2022, 5, 666-682.	10.0	49
2	Engineered Delivery of Dental Stemâ€Cellâ€Derived Extracellular Vesicles for Periodontal Tissue Regeneration. Advanced Healthcare Materials, 2022, 11, e2102593.	7.6	15
3	Biomaterial-based immunoengineering to fight COVID-19 and infectious diseases. Matter, 2021, 4, 1528-1554.	10.0	21
4	Augmenting T-cell responses to tumors by <i>in situ</i> nanomanufacturing. Materials Horizons, 2020, 7, 3028-3033.	12.2	3
5	Drug Delivery: Injectable Drugâ€Releasing Microporous Annealed Particle Scaffolds for Treating Myocardial Infarction (Adv. Funct. Mater. 43/2020). Advanced Functional Materials, 2020, 30, 2070289.	14.9	2
6	Injectable Drugâ€Releasing Microporous Annealed Particle Scaffolds for Treating Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2004307.	14.9	57
7	An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Science Translational Medicine, 2020, 12, .	12.4	199
8	In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomaterialia, 2020, 108, 326-336.	8.3	41
9	Engineered hydrogels for brain tumor culture and therapy. Bio-Design and Manufacturing, 2020, 3, 203-226.	7.7	24
10	Nano-in-Micro Dual Delivery Platform for Chronic Wound Healing Applications. Micromachines, 2020, 11, 158.	2.9	10
11	T-cell activation is modulated by the 3D mechanical microenvironment. Biomaterials, 2020, 252, 120058.	11.4	60
12	Augmentation of T-Cell Activation by Oscillatory Forces and Engineered Antigen-Presenting Cells. Nano Letters, 2019, 19, 6945-6954.	9.1	32
13	Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel. Dental Materials, 2019, 35, 990-1006.	3.5	48
14	Hierarchically Patterned Polydopamine-Containing Membranes for Periodontal Tissue Engineering. ACS Nano, 2019, 13, 3830-3838.	14.6	105
15	Mechanobiological Mimicry of Helper T Lymphocytes to Evaluate Cell–Biomaterials Crosstalk. Advanced Materials, 2018, 30, e1706780.	21.0	22
16	Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications. ACS Nano, 2018, 12, 4761-4774.	14.6	57
17	Cytokine Secreting Microparticles Engineer the Fate and the Effector Functions of Tâ€Cells. Advanced Materials, 2018, 30, 1703178.	21.0	25
18	Engineering natural heart valves: possibilities and challenges. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1675-1683.	2.7	20

Mohammad Mahdi

#	Article	IF	CITATIONS
19	Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. Journal of Controlled Release, 2017, 253, 46-63.	9.9	231
20	Experimental investigation and molecular dynamics simulation of acid-doped polybenzimidazole as a new membrane for air-breathing microbial fuel cells. Journal of Membrane Science, 2017, 535, 221-229.	8.2	19
21	Synthesis and temperature-induced self-assembly of a positively charged symmetrical pentablock terpolymer in aqueous solutions. European Polymer Journal, 2017, 97, 158-168.	5.4	9
22	Engineered Hydrogels in Cancer Therapy and Diagnosis. Trends in Biotechnology, 2017, 35, 1074-1087.	9.3	136
23	Nanoscale Optoregulation of Neural Stem Cell Differentiation by Intracellular Alteration of Redox Balance. Advanced Functional Materials, 2017, 27, 1701420.	14.9	14
24	High aspect ratio phospho-calcified rock candy-like cellulose nanowhiskers of wastepaper applicable in osteogenic differentiation of hMSCs. Carbohydrate Polymers, 2017, 175, 293-302.	10.2	33
25	Regulation of the fate of dentalâ€derived mesenchymal stem cells using engineered alginateâ€GelMA hydrogels. Journal of Biomedical Materials Research - Part A, 2017, 105, 2957-2967.	4.0	47
26	Hydrogel elasticity and microarchitecture regulate dental-derived mesenchymal stem cell-host immune system cross-talk. Acta Biomaterialia, 2017, 60, 181-189.	8.3	49
27	Magnetic responsive of paclitaxel delivery system based on SPION and palmitoyl chitosan. Journal of Magnetism and Magnetic Materials, 2017, 421, 316-325.	2.3	35
28	<scp>M</scp> orphological and transport characteristics of swollen chitosanâ€based proton exchange membranes studied by molecular modeling. Biopolymers, 2017, 107, 5-19.	2.4	6
29	Exploring the hydrated microstructure and molecular mobility in blend polyelectrolyte membranes by quantum mechanics and molecular dynamics simulations. RSC Advances, 2016, 6, 35517-35526.	3.6	24
30	Microfluidic Directed Synthesis of Alginate Nanogels with Tunable Pore Size for Efficient Protein Delivery. Langmuir, 2016, 32, 4996-5003.	3.5	97
31	Electromagnetic Fields and Stem Cell Fate: When Physics Meets Biology. Reviews of Physiology, Biochemistry and Pharmacology, 2016, 171, 63-97.	1.6	17
32	Rheological Study and Molecular Dynamics Simulation of Biopolymer Blend Thermogels of Tunable Strength. Biomacromolecules, 2016, 17, 3474-3484.	5.4	18
33	Microfluidic Manipulation of Core/Shell Nanoparticles for Oral Delivery of Chemotherapeutics: A New Treatment Approach for Colorectal Cancer. Advanced Materials, 2016, 28, 4134-4141.	21.0	74
34	Understanding biophysical behaviours of microfluidic-synthesized nanoparticles at nano-biointerface. Colloids and Surfaces B: Biointerfaces, 2016, 145, 802-811.	5.0	21
35	Novel chitosan-based nanobiohybrid membranes for wound dressing applications. RSC Advances, 2016, 6, 7701-7711.	3.6	56
36	lonic nanopeapods: Next-generation proton conducting membranes based on phosphotungstic acid filled carbon nanotube. Nano Energy, 2016, 23, 114-121.	16.0	32

Mohammad Mahdi

#	Article	IF	CITATIONS
37	The 2015 Joseph W. Richards Summer Research Fellowship Summary Report: Tuning the Electrochemical Performance of Direct Methanol Fuel Cells (DMFCs) Using Aligned 1D Bionanomaterials. Electrochemical Society Interface, 2015, 24, 72-73.	0.4	0
38	Tumor-derived exosomes-based cancer early detection: a molecular dynamics simulation. , 2015, , .		0
39	Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1809-1819.	3.3	49
40	On-chip synthesis of fine-tuned bone-seeking hybrid nanoparticles. Nanomedicine, 2015, 10, 3431-3449.	3.3	43
41	Onâ€Chip Fabrication of Paclitaxelâ€Loaded Chitosan Nanoparticles for Cancer Therapeutics. Advanced Functional Materials, 2014, 24, 432-441.	14.9	103
42	Air-breathing microbial fuel cell with enhanced performance using nanocomposite proton exchange membranes. Polymer, 2014, 55, 6102-6109.	3.8	18
43	Cellulose nanowhiskers to regulate the microstructure of perfluorosulfonate ionomers for high-performance fuel cells. Journal of Materials Chemistry A, 2014, 2, 11334.	10.3	45
44	Magnetically Aligned Nanodomains: Application in High-Performance Ion Conductive Membranes. ACS Applied Materials & Interfaces, 2014, 6, 7099-7107.	8.0	30
45	Drug Delivery: Onâ€Chip Fabrication of Paclitaxelâ€Loaded Chitosan Nanoparticles for Cancer Therapeutics (Adv. Funct. Mater. 4/2014). Advanced Functional Materials, 2014, 24, 418-418.	14.9	2
46	Microfluidicâ€Assisted Selfâ€Assembly of Complex Dendritic Polyethylene Drug Delivery Nanocapsules. Advanced Materials, 2014, 26, 3118-3123.	21.0	49
47	Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane. Nanoscale, 2013, 5, 11710.	5.6	48
48	Organically modified montmorillonite and chitosan–phosphotungstic acid complex nanocomposites as high performance membranes for fuel cell applications. Journal of Solid State Electrochemistry, 2013, 17, 2123-2137.	2.5	27
49	A microfluidic approach to synthesizing high-performance microfibers with tunable anhydrous proton conductivity. Lab on A Chip, 2013, 13, 4549.	6.0	17
50	Nafion®/histidine functionalized carbon nanotube: High-performance fuel cell membranes. International Journal of Hydrogen Energy, 2013, 38, 5894-5902.	7.1	64
51	Investigation of the effects of AMPS-modified nanoclay on fuel cell performance of sulfonated aromatic proton exchange membranes. International Journal of Hydrogen Energy, 2013, 38, 14076-14084.	7.1	24
52	Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents. Lab on A Chip, 2013, 13, 204-207.	6.0	121
53	Understanding structure and transport characteristics in hydrated sulfonated poly(ether ether) Tj ETQq1 1 0.784 Journal of Membrane Science, 2013, 429, 384-395.	4314 rgBT 8.2	/Overlock 10 37
54	Nafion/chitosan-wrapped CNT nanocomposite membrane for high-performance direct methanol fuel cells. RSC Advances, 2013, 3, 7337.	3.6	52

Монаммад Манді

#	Article	IF	CITATIONS
55	Investigation of the effects of methanol presence on characteristics of sulfonated aromatic electrolyte membranes: Molecular dynamics simulations. Journal of Power Sources, 2013, 243, 935-945.	7.8	22
56	Nafion-based magnetically aligned nanocomposite proton exchange membranes for direct methanol fuel cells. Solid State Ionics, 2013, 232, 58-67.	2.7	33
57	Nafion/benzotriazole functionalized montmorillonite nanocomposites: novel high-performance proton exchange membranes. RSC Advances, 2013, 3, 19357.	3.6	18
58	Morphological Tuning of Polymeric Nanoparticles via Microfluidic Platform for Fuel Cell Applications. Journal of the American Chemical Society, 2012, 134, 18904-18907.	13.7	55
59	Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer, 2012, 53, 2643-2651.	3.8	54
60	Molecular dynamics simulation study of proton diffusion in polymer electrolyte membranes based on sulfonated poly (ether ether ketone). International Journal of Hydrogen Energy, 2012, 37, 10256-10264.	7.1	65
61	Microfluidic synthesis of chitosan-based nanoparticles for fuel cell applications. Chemical Communications, 2012, 48, 7744.	4.1	71
62	Polybenzimidazoleâ€decorated carbon nanotube: A highâ€performance proton conductor. Physica Status Solidi - Rapid Research Letters, 2012, 6, 318-320.	2.4	16
63	Magnetic field aligned nanocomposite proton exchange membranes based on sulfonated poly (ether) Tj ETQq1 1 Hydrogen Energy, 2011, 36, 15323-15332.	0.784314 7.1	rgBT /Over 61
64	Photopolymerization of a dental nanocomposite as restorative material using the argon laser. Lasers in Medical Science, 2011, 26, 553-561.	2.1	15
65	Novel nanofiber-based triple-layer proton exchange membranes for fuel cell applications. Journal of Power Sources, 2011, 196, 4599-4603.	7.8	62
66	The effect of isopropanol addition on enhancement of transdermal controlled release of ibuprofen from ethylene vinyl acetate copolymer membranes. Journal of Applied Polymer Science, 2011, 122, 3048-3054.	2.6	14
67	Direct methanol fuel cell performance of sulfonated poly (2,6-dimethyl-1,4-phenylene) Tj ETQq1 1 0.784314 rgBT Energy, 2011, 36, 3688-3696.	- /Overlock 7.1	10 Tf 50 2 39
68	A high-performance chitosan-based double layer proton exchange membrane with reduced methanol crossover. International Journal of Hydrogen Energy, 2011, 36, 6105-6111.	7.1	35
69	Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications. Journal of Membrane Science, 2011, 368, 233-240.	8.2	128
70	Preparation and characterization of nanocomposite polyelectrolyte membranes based on Nafion® ionomer and nanocrystalline hydroxyapatite. Polymer, 2011, 52, 1286-1296.	3.8	37
71	Nanocomposite Proton Exchange Membranes Based on Sulfonated Poly (2,6-Dimethyl-1,4-Phenylene) Tj ETQq1 1 Physics, 2011, 50, 1108-1120.	0.784314 1.0	l rgBT /Over 6
72	Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications. Chemical Communications, 2010, 46, 6500.	4.1	65

Mohammad Mahdi

#	Article	IF	CITATIONS
73	Effects of organically modified nanoclay on the transport properties and electrochemical performance of acidâ€doped polybenzimidazole membranes. Journal of Applied Polymer Science, 2010, 117, 1227-1233.	2.6	20
74	Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone). Renewable Energy, 2010, 35, 226-231.	8.9	63
75	Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications. Journal of Power Sources, 2010, 195, 2450-2456.	7.8	86
76	Novel nanocomposite proton exchange membranes based on Nafion® and AMPS-modified montmorillonite for fuel cell applications. Journal of Membrane Science, 2010, 365, 286-293.	8.2	70
77	Structural modification of chitosan biopolymer as a novel polyelectrolyte membrane for green power generation. Polymers for Advanced Technologies, 2010, 21, 726-734.	3.2	63
78	Nafion/SAS-Modified Clay as a Novel Proton Exchange Nanocomposite Membranes for DMFC Applications. ECS Meeting Abstracts, 2010, , .	0.0	0
79	Investigation the Effect of Chitosan-Modified Montmorillonite Presence on Fuel Cell Performance of Partially Sulfonated Poly(2,6-dimethyl-1,4-Phenylene Oxide) at Elevated Temperatures. ECS Meeting Abstracts, 2010, , .	0.0	0
80	Evaluation of Fuel Cell Performance of Nafion / Molecular Sieves Nanocomposite Membranes. ECS Transactions, 2009, 17, 269-276.	0.5	13
81	Characterization of nanohybrid membranes for direct methanol fuel cell applications. Solid State Ionics, 2009, 180, 1497-1504.	2.7	35
82	Nafion®/bio-functionalized montmorillonite nanohybrids as novel polyelectrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 2009, 190, 318-321.	7.8	67
83	Preparation and characterization of nanocomposite membranes made of poly(2,6-dimethyl-1,4-phenylene oxide) and montmorillonite for direct methanol fuel cells. Journal of Power Sources, 2008, 183, 551-556.	7.8	55
84	Nanocomposite Membranes Made from Sulfonated Poly(ether ether ketone) and Montmorillonite Clay for Fuel Cell Applications. Energy & Fuels, 2008, 22, 2539-2542.	5.1	82