Roger G Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8330754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New fusion protein systems designed to give soluble expression inEscherichia coli. Biotechnology and Bioengineering, 1999, 65, 382-388.	1.7	338
2	Predicting the Solubility of Recombinant Proteins in Escherichia coli. Nature Biotechnology, 1991, 9, 443-448.	9.4	205
3	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	15.6	149
4	Predicting the Solubility of Recombinant Proteins in Escherichia coli. Methods in Molecular Biology, 2015, 1258, 403-408.	0.4	117
5	Comparison of the effects of hydrophobicity, amphiphilicity, and \hat{I}_{\pm} -helicity on the activities of antimicrobial peptides. Proteins: Structure, Function and Bioinformatics, 1995, 22, 182-186.	1.5	86
6	Prediction of protein solubility in <i>Escherichia coli</i> using logistic regression. Biotechnology and Bioengineering, 2010, 105, 374-383.	1.7	76
7	Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy. Nanotechnology, 2013, 24, 375104.	1.3	55
8	Recombinant production and purification of novel antisense antimicrobial peptide inEscherichia coli. , 1998, 57, 55-61.		53
9	Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer. Nanotechnology, 2018, 29, 035101.	1.3	38
10	New fusion protein systems designed to give soluble expression in Escherichia coli. , 1999, 65, 382.		37
11	Targeted Single-Walled Carbon Nanotubes for Photothermal Therapy Combined with Immune Checkpoint Inhibition for the Treatment of Metastatic Breast Cancer. Nanoscale Research Letters, 2021, 16, 9.	3.1	35
12	Purification by immobilized metal affinity chromatography of human atrial natriuretic peptide expressed in a novel thioredoxin fusion protein. Biotechnology Progress, 1995, 11, 265-269.	1.3	23
13	Annexin V-targeted enzyme prodrug therapy using cytosine deaminase in combination with 5-fluorocytosine. Cancer Letters, 2011, 307, 53-61.	3.2	21
14	Anti-CD73 and anti-OX40 immunotherapy coupled with a novel biocompatible enzyme prodrug system for the treatment of recurrent, metastatic ovarian cancer. Cancer Letters, 2018, 425, 174-182.	3.2	21
15	Enzyme prodrug therapy designed to target l-methioninase to the tumor vasculature. Cancer Letters, 2011, 301, 177-184.	3.2	20
16	Antitumor Activity of an Enzyme Prodrug Therapy Targeted to the Breast Tumor Vasculature. Cancer Investigation, 2013, 31, 505-510.	0.6	17
17	Targeted enzyme prodrug therapy for metastatic prostate cancer – a comparative study of L-methioninase, purine nucleoside phosphorylase, and cytosine deaminase. Journal of Biomedical Science, 2014, 21, 65.	2.6	17
18	Purine Nucleoside Phosphorylase Targeted by Annexin V to Breast Cancer Vasculature for Enzyme Prodrug Therapy. PLoS ONE, 2013, 8, e76403.	1.1	16

ROGER G HARRISON

#	Article	IF	CITATIONS
19	Annexin-directed β-glucuronidase for the targeted treatment of solid tumors. Protein Engineering, Design and Selection, 2017, 30, 85-94.	1.0	9
20	Antitumor Synergism and Enhanced Survival with a Tumor Vasculature–Targeted Enzyme Prodrug System, Rapamycin, and Cyclophosphamide. Molecular Cancer Therapeutics, 2017, 16, 1855-1865.	1.9	8
21	Targeting a methioninase-containing fusion protein to breast cancer urokinase receptors inhibits growth and migration. Anticancer Research, 2006, 26, 1745-51.	0.5	7
22	Rapid Screening of Fusion Protein Recombinants by Measuring Effects of Protein Overexpression on Cell Growth. BioTechniques, 1998, 24, 360-362.	0.8	4
23	Annexin V-Directed Enzyme Prodrug Therapy Plus Docetaxel for the Targeted Treatment of Pancreatic Cancer. Pancreas, 2015, 44, 945-952.	0.5	4
24	Purification of anL-asparaginase?atrial natriuretic peptide fusion protein expressed inEscherichia coli. Biotechnology and Bioengineering, 1995, 47, 483-491.	1.7	3
25	Enhanced computed tomography imaging of breast cancer via phosphatidylserine targeted gold nanoparticles. Biomedical Physics and Engineering Express, 2019, 5, 065019.	0.6	3
26	Anionic phospholipid expression as a molecular target in Listeria monocytogenes and Escherichia coli. International Journal of Antimicrobial Agents, 2020, 56, 106183.	1.1	1