List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8330735/publications.pdf Version: 2024-02-01

MEIDI LECHIRIM

#	Article	IF	CITATIONS
1	New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis. Carbon, 2017, 119, 519-521.	5.4	203
2	Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresource Technology, 2009, 100, 4026-4031.	4.8	187
3	Biosorption of basic dye from aqueous solutions by Date Stones and Palm-Trees Waste: Kinetic, equilibrium and thermodynamic studies. Desalination, 2011, 271, 80-87.	4.0	165
4	Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel, 2013, 107, 323-329.	3.4	133
5	Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 1906-1916.	3.2	132
6	Biomass char gasification by H2O, CO2 and their mixture: Evolution of chemical, textural and structural properties of the chars. Energy, 2016, 112, 133-145.	4.5	128
7	Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity. Energies, 2017, 10, 796.	1.6	128
8	Hydrochars production, characterization and application for wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 2020, 127, 109882.	8.2	122
9	Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity. Energy, 2015, 88, 703-710.	4.5	119
10	Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes Rendus Chimie, 2015, 18, 63-74.	0.2	103
11	Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus. Bioresource Technology, 2010, 101, 788-793.	4.8	102
12	Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres. Energy, 2012, 44, 702-709.	4.5	101
13	Removal of fluoride from groundwater using natural clay (kaolinite): Optimization of adsorption conditions. Comptes Rendus Chimie, 2019, 22, 105-112.	0.2	100
14	Oxidation mechanism of carbon black by NO2: Effect of water vapour. Fuel, 2005, 84, 1949-1956.	3.4	99
15	Thermochemical conversion of waste tyres—a review. Environmental Science and Pollution Research, 2017, 24, 9962-9992.	2.7	99
16	Interaction mechanism of NO2 with carbon black: effect of surface oxygen complexes. Journal of Analytical and Applied Pyrolysis, 2004, 72, 171-181.	2.6	95
17	Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration. Resources, Conservation and Recycling, 2010, 54, 271-277.	5.3	91
18	Biomass derived chars for energy applications. Renewable and Sustainable Energy Reviews, 2019, 108, 253-273.	8.2	90

#	Article	IF	CITATIONS
19	Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environmental Science and Pollution Research, 2017, 24, 9993-10004.	2.7	86
20	Investigations on phosphorus recovery from aqueous solutions by biochars derived from magnesium-pretreated cypress sawdust. Journal of Environmental Management, 2018, 216, 305-314.	3.8	84
21	CO2 gasification of woody biomass chars: The influence of KÂand Si on char reactivity. Comptes Rendus Chimie, 2016, 19, 457-465.	0.2	81
22	Adsorption/reduction of nitrogen dioxide on activated carbons: Textural properties versus surface chemistry – A review. Chemical Engineering Journal, 2018, 347, 493-504.	6.6	81
23	Sludge-derived biochars: A review on the influence of synthesis conditions on pollutants removal efficiency from wastewaters. Renewable and Sustainable Energy Reviews, 2021, 144, 111068.	8.2	72
24	The use of exhausted grape marc to produce biofuels and biofertilizers: Effect of pyrolysis temperatures on biochars properties. Renewable and Sustainable Energy Reviews, 2019, 107, 425-433.	8.2	68
25	Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy for Sustainable Development, 2014, 23, 188-193.	2.0	61
26	Combined NMR structural characterization and thermogravimetric analyses for the assessment of the AAEM effect during lignocellulosic biomass pyrolysis. Energy, 2017, 134, 10-23.	4.5	61
27	Energy recovery from Tunisian agri-food wastes: Evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape marc. Energy, 2016, 107, 409-418.	4.5	60
28	Olive Mill Wastewater: From a Pollutant to Green Fuels, Agricultural Water Source and Biofertilizer. ACS Sustainable Chemistry and Engineering, 2017, 5, 8988-8996.	3.2	59
29	Olive mill wastewater: From a pollutant to green fuels, agricultural and water source and bio-fertilizer – Hydrothermal carbonization. Science of the Total Environment, 2020, 733, 139314.	3.9	58
30	Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth. Science of the Total Environment, 2021, 755, 142531.	3.9	58
31	Catalytic effect of platinum on the kinetics of carbon oxidation by NO2 and O2. Applied Catalysis B: Environmental, 2007, 76, 235-240.	10.8	57
32	Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Processing Technology, 2015, 138, 404-412.	3.7	55
33	Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies. Environmental Science and Pollution Research, 2017, 24, 10041-10055.	2.7	55
34	Role of inorganics on the biomass char gasification reactivity: A review involving reaction mechanisms and kinetics models. Renewable and Sustainable Energy Reviews, 2021, 135, 110136.	8.2	54
35	Comparison of NO2 removal using date pits activated carbon and modified commercialized activated carbon via different preparation methods: Effect of porosity and surface chemistry. Chemical Engineering Journal, 2014, 253, 121-129.	6.6	53
36	Pyrolysis kinetics and physicochemical properties of agropellets produced from spent ground coffee blended with conventional biomass. Chemical Engineering Research and Design, 2014, 92, 1876-1882.	2.7	53

#	Article	IF	CITATIONS
37	Production and characterization of bio-oil from the pyrolysis of waste frying oil. Environmental Science and Pollution Research, 2017, 24, 9951-9961.	2.7	51
38	Combined process for the treatment of olive oil mill wastewater: Absorption on sawdust and combustion of the impregnated sawdust. Bioresource Technology, 2010, 101, 6962-6971.	4.8	50
39	Diesel soot oxidation by nitrogen dioxide, oxygen and water under engine exhaust conditions: Kinetics data related to the reaction mechanism. Comptes Rendus Chimie, 2014, 17, 672-680.	0.2	50
40	Combustion characteristics and kinetics of torrefied olive pomace. Energy, 2016, 107, 453-463.	4.5	49
41	CeO2 catalytic activity for soot oxidation under NO/O2 in loose and tight contact. Catalysis Today, 2012, 189, 65-69.	2.2	48
42	Kinetics of catalyzed and nonâ€catalyzed soot oxidation with nitrogen dioxide under regeneration particle trap conditions. Journal of Chemical Technology and Biotechnology, 2009, 84, 770-776.	1.6	46
43	Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis. Energies, 2018, 11, 730.	1.6	46
44	Olive Mill Wastewater: From a Pollutant to Green Fuels, Agricultural Water Source, and Bio-Fertilizer. Part 2: Water Recovery. Water (Switzerland), 2019, 11, 768.	1.2	46
45	Thermal degradation of Miscanthus pellets: kinetics and aerosols characterization. Waste and Biomass Valorization, 2011, 2, 149-155.	1.8	45
46	The Application of Analytical Hierarchy Process in Combination with PESTEL-SWOT Analysis to Assess the Hydrocarbons Sector in Cyprus. Energies, 2019, 12, 791.	1.6	45
47	Energetic valorisation of olive mill wastewater impregnated on low cost absorbent: Sawdust versus olive solid waste. Energy, 2012, 39, 74-81.	4.5	44
48	A new valorisation strategy of olive mill wastewater: Impregnation on sawdust and combustion. Resources, Conservation and Recycling, 2012, 59, 4-8.	5.3	44
49	Devolatilization Kinetics of Miscanthus Straw from Thermogravimetric Analysis. International Journal of Green Energy, 2010, 7, 164-173.	2.1	43
50	Biosorption performance, combustion behavior, and leaching characteristics of olive solid waste during the removal of copper and nickel from aqueous solutions. Clean Technologies and Environmental Policy, 2014, 16, 979-986.	2.1	43
51	Kenaf stems: Thermal characterization and conversion for biofuel and biochar production. Fuel, 2020, 262, 116654.	3.4	43
52	Study on the emission mechanism during devolatilization/char oxidation and direct oxidation of olive solid waste in a fixed bed reactor. Journal of Analytical and Applied Pyrolysis, 2010, 87, 168-174.	2.6	42
53	Simulation of biofuel production via fast pyrolysis of palm oil residues. Fuel, 2015, 159, 819-827.	3.4	41
54	Impregnation of olive mill wastewater on dry biomasses: Impact on chemical properties and combustion performances. Energy, 2014, 78, 479-489.	4.5	40

#	Article	IF	CITATIONS
55	The Potential of Activated Carbon Made of Agro-Industrial Residues in NOx Immissions Abatement. Energies, 2017, 10, 1508.	1.6	39
56	Crisis in leadership vs waste management. Euro-Mediterranean Journal for Environmental Integration, 2021, 6, 1.	0.6	39
57	Biosorption of copper from aqueous solutions by date stones and palm-trees waste. Environmental Chemistry Letters, 2011, 9, 65-69.	8.3	37
58	Energy recovery of date palm residues in a domestic pellet boiler. Fuel Processing Technology, 2013, 112, 12-18.	3.7	36
59	Devolatilization behavior and pyrolysis kinetics of potential Tunisian biomass fuels. Environmental Progress and Sustainable Energy, 2014, 33, 1452-1458.	1.3	36
60	Comparative study of the CH4/CO2 adsorption selectivity of activated carbons for biogas upgrading. Journal of Environmental Chemical Engineering, 2019, 7, 103368.	3.3	36
61	Biochar production from Cypress sawdust and olive mill wastewater: Agronomic approach. Science of the Total Environment, 2021, 752, 141713.	3.9	36
62	Pyrolysis of Olive Pomace: Degradation Kinetics, Gaseous Analysis and Char Characterization. Waste and Biomass Valorization, 2017, 8, 1689-1697.	1.8	35
63	Fast pyrolysis and steam gasification of pellets prepared from olive oil mill residues. Energy, 2018, 150, 61-68.	4.5	35
64	The Potential of Thermal Plasma Gasification of Olive Pomace Charcoal. Energies, 2017, 10, 710.	1.6	33
65	Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption. Materials, 2019, 12, 1253.	1.3	33
66	Performance and emissions characteristics of compressed spent coffee ground/wood chip logs in a residential stove. Energy for Sustainable Development, 2015, 28, 52-59.	2.0	32
67	Towards understanding the role of K during biomass steam gasification. Fuel, 2020, 282, 118806.	3.4	32
68	Study of experimental and theoretical procedures when using thermogravimetric analysis to determine kinetic parameters of carbon black oxidation. Journal of Thermal Analysis and Calorimetry, 2010, 102, 837-849.	2.0	31
69	Performance of a household boiler fed with agropellets blended from olive mill solid waste and pine sawdust. Fuel, 2015, 153, 431-436.	3.4	31
70	Glycerol steam reforming for hydrogen and synthesis gas production. International Journal of Hydrogen Energy, 2017, 42, 12896-12904.	3.8	31
71	Physico-chemical properties and thermal degradation characteristics of agropellets from olive mill by-products/sawdust blends. Fuel Processing Technology, 2014, 126, 215-221.	3.7	30
72	Thermal conversion of flax shives through slow pyrolysis process: in-depth biochar characterization and future potential use. Biomass Conversion and Biorefinery, 2021, 11, 325-337.	2.9	30

#	Article	IF	CITATIONS
73	Kinetic analysis of thermal decomposition of date palm residues using Coats–Redfern method. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 1117-1124.	1.2	29
74	Towards Sustainable Energy Retrofitting, a Simulation for Potential Energy Use Reduction in Residential Buildings in Palestine. Energies, 2021, 14, 3876.	1.6	29
75	Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. Journal of Environmental Management, 2022, 305, 114368.	3.8	29
76	CO2 and CH4 Adsorption Behavior of Biomass-Based Activated Carbons. Energies, 2018, 11, 3136.	1.6	28
77	Olive mill wastewater: From a pollutant to green fuels, agricultural water source and bio-fertilizer. Biofuel production. Renewable Energy, 2020, 149, 716-724.	4.3	28
78	Measurement of Gaseous and Particulate Pollutants during Combustion of Date Palm Wastes for Energy Recovery. Aerosol and Air Quality Research, 2012, 12, 814-825.	0.9	28
79	Comparison of the activity of Ru and Pt catalysts for the oxidation of carbon by NO2. Applied Catalysis B: Environmental, 2007, 72, 299-303.	10.8	27
80	Pyrolysis Process as a Sustainable Management Option of Poultry Manure: Characterization of the Derived Biochars and Assessment of their Nutrient Release Capacities. Water (Switzerland), 2019, 11, 2271.	1.2	27
81	Numerical study of radiative heat transfer effects on a complex configuration of rack storage fire. Energy, 2011, 36, 2984-2996.	4.5	25
82	Characterization of coffee residues pellets and their performance in a residential combustor. International Journal of Green Energy, 2016, 13, 608-615.	2.1	25
83	Use of Lignite as a Low-Cost Material for Cadmium and Copper Removal from Aqueous Solutions: Assessment of Adsorption Characteristics and Exploration of Involved Mechanisms. Water (Switzerland), 2021, 13, 164.	1.2	25
84	Potential for Production of Biochar-Based Fertilizers from Olive Mill Waste in Mediterranean Basin Countries: An Initial Assessment for Spain, Tunisia, and Greece. Sustainability, 2020, 12, 6081.	1.6	24
85	Olive Mill Wastewater: From a Pollutant to Green Fuels, Agricultural Water Source and Bio-Fertilizer—Part 1. The Drying Kinetics. Energies, 2017, 10, 1423.	1.6	23
86	Elaboration of alumina-based materials by solution combustion synthesis: A review. Comptes Rendus Chimie, 2019, 22, 206-219.	0.2	20
87	Simulation of the fast pyrolysis of Tunisian biomass feedstocks for bio-fuel production. Comptes Rendus Chimie, 2016, 19, 466-474.	0.2	19
88	Tomato-Processing By-Product Combustion: Thermal and Kinetic Analyses. Materials, 2019, 12, 553.	1.3	19
89	Evaluation of date palm residues combustion in fixed bed laboratory reactor: A comparison with sawdust behaviour. Renewable Energy, 2014, 62, 209-215.	4.3	18
90	Energy recovery from waste glycerol by utilizing thermal water vapor plasma. Environmental Science and Pollution Research, 2017, 24, 10030-10040.	2.7	18

#	Article	IF	CITATIONS
91	Green Carbon Composite-Derived Polymer Resin and Waste Cotton Fibers for the Removal of Alizarin Red S Dye. Energies, 2017, 10, 1321.	1.6	18
92	An overview of renewable energy strategies and policies in Palestine: Strengths and challenges. Energy for Sustainable Development, 2022, 68, 258-272.	2.0	17
93	Ruthenium and platinum catalyzed carbon oxidation: A comparative kinetic study. Applied Catalysis B: Environmental, 2010, 96, 34-40.	10.8	16
94	The relationship between mineral contents, particle matter and bottom ash distribution during pellet combustion: molar balance and chemometric analysis. Environmental Science and Pollution Research, 2017, 24, 9927-9939.	2.7	16
95	Factors Influencing NO2 Adsorption/Reduction on Microporous Activated Carbon: Porosity vs. Surface Chemistry. Materials, 2018, 11, 622.	1.3	16
96	Tunisian tomato waste pyrolysis: thermogravimetry analysis and kinetic study. Environmental Science and Pollution Research, 2019, 26, 35435-35444.	2.7	16
97	The Heat Treatment Severity Index: A new metric correlated to the properties of biochars obtained from entrained flow pyrolysis of biomass. Fuel, 2019, 244, 61-68.	3.4	16
98	Nutrient retention and release from raw exhausted grape marc biochars and an amended agricultural soil: Static and dynamic investigation. Environmental Technology and Innovation, 2020, 19, 100885.	3.0	16
99	Waste Strategies Development in the Framework of Circular Economy. Sustainability, 2021, 13, 13467.	1.6	16
100	Optimization of hybrid treatment of olive mill wastewaters through impregnation onto raw cypress sawdust and electrocoagulation. Environmental Science and Pollution Research, 2021, 28, 24470-24485.	2.7	15
101	Kinetics and mechanism of the oxidation of carbon by NO ₂ in the presence of water vapor. International Journal of Chemical Kinetics, 2009, 41, 236-244.	1.0	14
102	Experimental investigation on gaseous emissions from the combustion of date palm residues in laboratory scale furnace. Bioresource Technology, 2013, 131, 94-100.	4.8	14
103	Activated Carbon Prepared from Date Pits for the Retention of NO ₂ at Low Temperature. International Journal of Chemical Reactor Engineering, 2014, 12, 717-726.	0.6	14
104	Experimental Determination of the CH ₄ and CO ₂ Pure Gas Adsorption Isotherms on Different Activated Carbons. Journal of Chemical & Engineering Data, 2018, 63, 3027-3034.	1.0	14
105	Briquettes Production from Olive Mill Waste under Optimal Temperature and Pressure Conditions: Physico-Chemical and Mechanical Characterizations. Energies, 2020, 13, 1214.	1.6	14
106	Lead removal from aqueous solutions by olive mill wastes derived biochar: Batch experiments and geochemical modelling. Journal of Environmental Management, 2022, 318, 115562.	3.8	14
107	Mechanistic Study of Carbon Oxidation with NO ₂ and O ₂ in the Presence of a Ru/Na‥ Catalyst. Chemical Engineering and Technology, 2009, 32, 830-834.	0.9	13
108	Dynamics and Kinetics of Cupric Ion Removal from Wastewaters by Tunisian Solid Crude Olive-Oil Waste. Materials, 2019, 12, 365.	1.3	13

#	Article	IF	CITATIONS
109	Influence of CO2 Concentration and Inorganic Species on the Gasification of Lignocellulosic Biomass Derived Chars. Waste and Biomass Valorization, 2019, 10, 3745-3752.	1.8	13
110	Olive Mill by-Products Thermochemical Conversion via Hydrothermal Carbonization and Slow Pyrolysis: Detailed Comparison between the Generated Hydrochars and Biochars Characteristics. Processes, 2022, 10, 231.	1.3	13
111	Strategies for bioenergy production from agriculture and agrifood processing residues. Biofuels, 2018, 9, 541-543.	1.4	12
112	Valorization of salt post-modified poultry manure biochars for phosphorus recovery from aqueous solutions: investigations on adsorption properties and involved mechanism. Biomass Conversion and Biorefinery, 2022, 12, 4333-4348.	2.9	12
113	The Influence of Char Preparation and Biomass Type on Char Steam Gasification Kinetics. Energies, 2018, 11, 2126.	1.6	10
114	Investigations on Biogas Recovery from Anaerobic Digestion of Raw Sludge and Its Mixture with Agri-Food Wastes: Application to the Largest Industrial Estate in Oman. Sustainability, 2021, 13, 3698.	1.6	10
115	Sea Level Rise Mitigation by Global Sea Water Desalination Using Renewable-Energy-Powered Plants. Sustainability, 2021, 13, 9552.	1.6	10
116	The dairy biorefinery: Integrating treatment process for Tunisian cheese whey valorization. Chemosphere, 2022, 293, 133567.	4.2	10
117	Modeling of NOx adsorption–desorption–reduction cycles on a ruthenium loaded Na–Y zeolite. Applied Catalysis B: Environmental, 2010, 97, 13-20.	10.8	9
118	Energy applications of coffee processing by-products. , 2017, , 323-367.		9
118 119	Energy applications of coffee processing by-products. , 2017, , 323-367. Assessment of energy potential of date palm residues in Khairpur district, Pakistan. Biofuels, 2019, , 1-8.	1.4	9
118 119 120	Energy applications of coffee processing by-products. , 2017, , 323-367. Assessment of energy potential of date palm residues in Khairpur district, Pakistan. Biofuels, 2019, , 1-8. The effects of textural modifications on beech wood-char gasification rate under alternate atmospheres of CO 2 and H 2 O. Fuel Processing Technology, 2015, 138, 687-694.	1.4 3.7	9 9 8
118 119 120 121	Energy applications of coffee processing by-products. , 2017, , 323-367. Assessment of energy potential of date palm residues in Khairpur district, Pakistan. Biofuels, 2019, , 1-8. The effects of textural modifications on beech wood-char gasification rate under alternate atmospheres of CO 2 and H 2 O. Fuel Processing Technology, 2015, 138, 687-694. Biomass Chars: Elaboration, Characterization and Applications. Energies, 2017, 10, 2040.	1.4 3.7 1.6	9 9 8 8
118 119 120 121 122	Energy applications of coffee processing by-products. , 2017, , 323-367.Assessment of energy potential of date palm residues in Khairpur district, Pakistan. Biofuels, 2019, , 1-8.The effects of textural modifications on beech wood-char gasification rate under alternate atmospheres of CO 2 and H 2 O. Fuel Processing Technology, 2015, 138, 687-694.Biomass Chars: Elaboration, Characterization and Applications. Energies, 2017, 10, 2040.Static and Dynamic Investigations on Leaching/Retention of Nutrients from Raw Poultry Manure Biochars and Amended Agricultural Soil. Sustainability, 2021, 13, 1212.	1.4 3.7 1.6 1.6	9 9 8 8 8
 118 119 120 121 122 123 	Energy applications of coffee processing by-products. , 2017, , 323-367.Assessment of energy potential of date palm residues in Khairpur district, Pakistan. Biofuels, 2019, , 1-8.The effects of textural modifications on beech wood-char gasification rate under alternate atmospheres of CO 2 and H 2 O. Fuel Processing Technology, 2015, 138, 687-694.Biomass Chars: Elaboration, Characterization and Applications. Energies, 2017, 10, 2040.Static and Dynamic Investigations on Leaching/Retention of Nutrients from Raw Poultry Manure Biochars and Amended Agricultural Soil. Sustainability, 2021, 13, 1212.Characterization of biomass-derived chars. , 2019, , 69-108.	1.4 3.7 1.6 1.6	9 9 8 8 8 8 7
 118 119 120 121 122 123 124 	Energy applications of coffee processing by-products., 2017,, 323-367.Assessment of energy potential of date palm residues in Khairpur district, Pakistan. Biofuels, 2019, , 1-8.The effects of textural modifications on beech wood-char gasification rate under alternate atmospheres of CO 2 and H 2 O. Fuel Processing Technology, 2015, 138, 687-694.Biomass Chars: Elaboration, Characterization and Applications. Energies, 2017, 10, 2040.Static and Dynamic Investigations on Leaching/Retention of Nutrients from Raw Poultry Manure Biochars and Amended Agricultural Soil. Sustainability, 2021, 13, 1212.Characterization of biomass-derived chars., 2019,, 69-108.Optimization of a cationic dye desorption from a loaded-lignocellulosic biomass: factorial design experiments and investigation of mechanisms. Comptes Rendus Chimie, 2021, 24, 71-84.	1.4 3.7 1.6 1.6	9 9 8 8 8 8 7 7
 118 119 120 121 122 123 124 125 	 Energy applications of coffee processing by-products., 2017,, 323-367. Assessment of energy potential of date palm residues in Khairpur district, Pakistan. Biofuels, 2019,, 1-8. The effects of textural modifications on beech wood-char gasification rate under alternate atmospheres of CO 2 and H 2 O. Fuel Processing Technology, 2015, 138, 687-694. Biomass Chars: Elaboration, Characterization and Applications. Energies, 2017, 10, 2040. Static and Dynamic Investigations on Leaching/Retention of Nutrients from Raw Poultry Manure Biochars and Amended Agricultural Soil. Sustainability, 2021, 13, 1212. Characterization of biomass-derived chars., 2019,, 69-108. Optimization of a cationic dye desorption from a loaded-lignocellulosic biomass: factorial design experiments and investigation of mechanisms. Comptes Rendus Chimie, 2021, 24, 71-84. Biomass steam gasification kinetics: relative impact of char physical properties vs. inorganic composition. Biomass Conversion and Biorefinery, 2022, 12, 3475-3490. 	1.4 3.7 1.6 1.6 0.2 2.9	9 9 8 8 8 8 7 7 7

#	Article	IF	CITATIONS
127	Combustion of raw and densified Tunisian oleic by-products in a fixed bed reactor. Fuel, 2020, 277, 118181.	3.4	6
128	Investigations on lignite use for lead removal from aqueous solutions under static and dynamic conditions: adsorption properties and mechanism exploration. Comptes Rendus Chimie, 2021, 24, 7-22.	0.2	6
129	SCHEMA-SI: A hybrid fire safety engineering tool Part II: Case study. Fire Safety Journal, 2013, 58, 58-64.	1.4	5
130	Numerical Modeling of Oxygen Carrier Performances (NiO/NiAl2O4) for Chemical-Looping Combustion. Energies, 2017, 10, 864.	1.6	5
131	Biomass feedstocks. , 2019, , 1-38.		5
132	Physico-chemical properties of hydrochars produced from raw olive pomace using olive mill wastewater as moisture source. Comptes Rendus Chimie, 2020, 23, 635-652.	0.2	5
133	Estimation of solar irradiation and optimum tilt angles for south-facing surfaces in the United Arab Emirates: a case study using PVGIS and PVWatts. , 2022, , 3-39.		5
134	Investigations on potential Tunisian biomasses energetic valorization: thermogravimetric characterization and kinetic degradation analysis. Comptes Rendus Chimie, 2022, 25, 81-92.	0.2	5
135	SCHEMA-SI: A Hybrid fire safety engineering tool-Part I: Tool theoretical basis. Fire Safety Journal, 2013, 58, 132-141.	1.4	4
136	Environmental applications of coffee processing by-products. , 2017, , 245-297.		4
137	Cyprus energy resources and their potential to increase sustainability. , 2018, , .		4
138	Biomass-derived chars used as adsorbents for liquid and gaseous effluents treatment. , 2019, , 229-290.		4
139	Biomass Chars: Elaboration, Characterization and Applications II. Energies, 2019, 12, 384.	1.6	4
140	Wastewater Treatment, Valorization, and Reuse. Water (Switzerland), 2021, 13, 548.	1.2	4
141	Conversion of Industrial Sludge into Activated Biochar for Effective Cationic Dye Removal: Characterization and Adsorption Properties Assessment. Water (Switzerland), 2022, 14, 2206.	1.2	4
142	The use of Petri nets and a two-zone model for fire scene reconstruction. Fire Safety Journal, 2013, 55, 139-151.	1.4	3
143	Thermal degradation kinetics and mechanisms of <i>Posidonia Oceanica</i> under inert and oxidative atmospheres. International Journal of Green Energy, 2016, 13, 665-671.	2.1	3
144	Process engineering for pollution control and waste minimization. Environmental Science and Pollution Research, 2017, 24, 9827-9830.	2.7	3

#	Article	IF	CITATIONS
145	Sustainability assessment for biomass-derived char production and applications. , 2019, , 447-479.		3
146	Sustainable Biomass Resources for Environmental, Agronomic, Biomaterials and Energy Applications 1. Comptes Rendus Chimie, 2020, 23, 583-587.	0.2	3
147	Preparedness Plan for the Water Supply Infrastructure during Water Terrorism—A Case Study from Irbid, Jordan. Water (Switzerland), 2021, 13, 2887.	1.2	3
148	Olive Mill Wastes in the Mediterranean: An Initial Assessment of Organic Matter and Nutrients of Agricultural Value. Environmental Science and Engineering, 2021, , 1097-1101.	0.1	2
149	EQUILIBRIUM MODELLING OF COPPER IONS BIOSORPTION BY DATE STONES AND PALM-TREES WASTE. Environmental Engineering and Management Journal, 2014, 13, 653-662.	0.2	2
150	An optimization study of nickel catalyst supported on activated carbon for the 2-nitrophenol catalytic ozonation. , 0, 112, 242-249.		2
151	Geochemical Modelling of Inorganic Nutrients Leaching from an Agricultural Soil Amended with Olive-Mill Waste Biochar. Agronomy, 2022, 12, 480.	1.3	2
152	Biochar production from grape marc, kenaf stems and flax shives: Effect of temperature on textural and physicochemical properties. , 2019, , .		1
153	Olive oil by-products : From harmful waste to interesting carbonaceous materials : Hydrothermal conversion of olive oil by-products into carbon rich chars. , 2019, , .		1
154	Char combustion. , 2019, , 147-185.		1
155	Reconstruction of an Arson Fire Scene in Accommodation Unit Using Fire Dynamic Simulator. Journal of Applied Fire Science, 2009, 19, 133-151.	0.0	1
156	Thermochemical conversion of tomato wastes. , 2022, , 285-332.		1
157	Competitive bio-sorption of basic dyes onto petiole palm tree wastes in single and binary systems. Comptes Rendus Chimie, 2022, 25, 27-41.	0.2	1
158	Sustainable renewable energy policies and regulations, recent advances, and challenges. , 2022, , 449-465.		1
159	Green pellets production and applications in energy sector. , 2022, , 139-185.		1
160	Modelling and Optimisation in Chemical and Biological Engineering: Application to Wastewater and Gas Treatment. International Journal of Chemical Reactor Engineering, 2014, 12, 669-669.	0.6	0
161	Valorization of cotton waste generated from the Tunisian textile industry through the production of adsorbents carbonaceous materials. , 2016, , .		0
162	International Renewable Energy Congress 2015: Focus on biomass energy, environment and sustainable development. Comptes Rendus Chimie, 2016, 19, 419-422.	0.2	0

#	Article	IF	CITATIONS
163	Effectiveness Use of Olive Mill Wastewaters as Impregnator Agent for the Production of Biochars from Cypress Sawdust: Chemical Charcterization and Effects on a Plant Growth. Advances in Science, Technology and Innovation, 2018, , 1471-1473.	0.2	0
164	Char gasification. , 2019, , 187-228.		0
165	Environmental applications of tomato processing by-products. , 2022, , 231-284.		0
166	Biofuels production: Biogas, biodiesel and bioethanol from tomato wastes. , 2022, , 333-370.		0
167	Orange and Potato Peels derived Biochars: Production, Characterization and Potential Applications. , 2020, , .		0