Alexei V Tiunov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8330154/publications.pdf

Version: 2024-02-01

147726 88593 5,566 125 31 70 citations h-index g-index papers 134 134 134 6004 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Biodiversity and Litter Decomposition in Terrestrial Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 191-218.	3.8	1,258
2	Soil nematode abundance and functional group composition at a global scale. Nature, 2019, 572, 194-198.	13.7	635
3	Stable isotopes of carbon and nitrogen in soil ecological studies. Biology Bulletin, 2007, 34, 395-407.	0.1	181
4	Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae). Soil Biology and Biochemistry, 1999, 31, 2039-2048.	4.2	168
5	Facilitative interactions rather than resource partitioning drive diversity-functioning relationships in laboratory fungal communities. Ecology Letters, 2005, 8, 618-625.	3.0	168
6	Soil fauna: key to new carbon models. Soil, 2016, 2, 565-582.	2.2	149
7	Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biology and Biochemistry, 2016, 101, 20-31.	4.2	145
8	Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biological Reviews, 2019, 94, 37-59.	4.7	144
9	Invasion Patterns of Lumbricidae Into the Previously Earthworm-free Areas of Northeastern Europe and the Western Great Lakes Region of North America. Biological Invasions, 2006, 8, 1223-1234.	1.2	136
10	Microbial biomass, biovolume and respiration in Lumbricus terrestris L. cast material of different age. Soil Biology and Biochemistry, 2000, 32, 265-275.	4.2	132
11	Carbon availability controls the growth of detritivores (Lumbricidae) and their effect on nitrogen mineralization. Oecologia, 2004, 138, 83-90.	0.9	114
12	Feeding habits and multifunctional classification of soilâ€associated consumers from protists to vertebrates. Biological Reviews, 2022, 97, 1057-1117.	4.7	113
13	Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia, 2002, 133, 254-260.	0.9	110
14	Carbon stable isotope fractionation and trophic transfer of fatty acids in fungal based soil food chains. Soil Biology and Biochemistry, 2005, 37, 945-953.	4.2	89
15	A methodological framework to embrace soil biodiversity. Soil Biology and Biochemistry, 2019, 136, 107536.	4.2	88
16	Microfungal communities in soil, litter and casts of Lumbricus terrestris L. (Lumbricidae): a laboratory experiment. Applied Soil Ecology, 2000, 14, 17-26.	2.1	84
17	Microflora, Protozoa and Nematoda in Lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia, 2001, 45, 46-60.	0.5	79
18	Trophic Position of Consumers and Size Structure of Food Webs across Aquatic and Terrestrial Ecosystems. American Naturalist, 2019, 194, 823-839.	1.0	76

#	Article	lF	Citations
19	The addition of labile carbon alters litter fungal communities and decreases litter decomposition rates. Applied Soil Ecology, 2009, 42, 264-270.	2.1	73
20	Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi. Oecologia, 2005, 142, 636-642.	0.9	69
21	Priorities for research in soil ecology. Pedobiologia, 2017, 63, 1-7.	0.5	64
22	Stable isotope composition of mycophagous collembolans versus mycotrophic plants: Do soil invertebrates feed on mycorrhizal fungi?. Soil Biology and Biochemistry, 2016, 93, 115-118.	4.2	49
23	Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. European Journal of Soil Biology, 2017, 82, 88-97.	1.4	49
24	A global database of soil nematode abundance and functional group composition. Scientific Data, 2020, 7, 103.	2.4	46
25	Trophic position of microbivorous and predatory soil nematodes in a boreal forest as indicated by stable isotope analysis. Soil Biology and Biochemistry, 2015, 86, 193-200.	4.2	44
26	Large ¹³ C/ ¹² C and small ¹⁵ N/ ¹⁴ N isotope fractionation in an experimental detrital foodweb (litter–fungi–collembolans). Ecological Research, 2013, 28, 1069-1079.	0.7	41
27	Effects of seasonal and diurnal temperature fluctuations on population dynamics of two epigeic earthworm species in forest soil. Soil Biology and Biochemistry, 2011, 43, 559-570.	4.2	40
28	Fungal and bacterial communities in Lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia, 2002, 46, 595-605.	0.5	39
29	Size compartmentalization of energy channeling in terrestrial belowground food webs. Ecology, 2021, 102, e03421.	1.5	36
30	Particle size alters litter diversity effects on decomposition. Soil Biology and Biochemistry, 2009, 41, 176-178.	4.2	35
31	Isotopic niche (δ ¹³ Đ; and δ ¹⁵ N values) of soil macrofauna in temperate forests. Rapid Communications in Mass Spectrometry, 2014, 28, 1303-1311.	0.7	33
32	Combining bulk and amino acid stable isotope analyses to quantify trophic level and basal resources of detritivores: a case study on earthworms. Oecologia, 2019, 189, 447-460.	0.9	33
33	The importance of mycelial connection at the soil–litter interface for nutrient translocation, enzyme activity and litter decomposition. Applied Soil Ecology, 2011, 51, 35-41.	2.1	31
34	Long-term changes in primary production and mineralization of organic matter in the Neva Estuary (Baltic Sea). Journal of Marine Systems, 2017, 171, 73-80.	0.9	31
35	Non-vascular plants as a food source for litter-dwelling Collembola: Field evidence. Pedobiologia, 2018, 66, 11-17.	0.5	31
36	Assimilation of plant-derived freshly fixed carbon by soil collembolans: Not only via roots?. Pedobiologia, 2016, 59, 189-193.	0.5	30

#	Article	IF	Citations
37	Trophic consistency of supraspecific taxa in belowâ€ground invertebrate communities: Comparison across lineages and taxonomic ranks. Functional Ecology, 2019, 33, 1172-1183.	1.7	30
38	High Niche Overlap in the Stable Isotope Space Of Ground Beetles. Annales Zoologici Fennici, 2014, 51, 301-312.	0.2	29
39	An ancient bison from the mouth of the Rauchua River (Chukotka, Russia). Quaternary Research, 2015, 84, 232-245.	1.0	29
40	Adaptive radiation of barbs of the genus <i>Labeobarbus</i> (Cyprinidae) in an East African river. Freshwater Biology, 2019, 64, 1721-1736.	1.2	29
41	Shortâ€term incorporation of freshly fixed plant carbon into the soil animal food web: field study in a spruce forest. Ecological Research, 2016, 31, 923-933.	0.7	23
42	Long-term effects of seasonal and diurnal temperature fluctuations on carbon dioxide efflux from a forest soil. Soil Biology and Biochemistry, 2006, 38, 3387-3397.	4.2	22
43	Stable isotope (¹³ C/ ¹² C and ¹⁵ N/ ¹⁴ N) composition of the woolly rhinoceros <i>Coelodonta antiquitatis</i> horn suggests seasonal changes in the diet. Rapid Communications in Mass Spectrometry, 2010, 24, 3146-3150.	0.7	21
44	KEYLINK: towards a more integrative soil representation for inclusion in ecosystem scale models. I. review and model concept. PeerJ, 2020, 8, e9750.	0.9	21
45	Trophic fractionation (\hat{l} "15N) in Collembola depends on nutritional status: A laboratory experiment and mini-review. Pedobiologia, 2011, 54, 101-109.	0.5	20
46	Seasonal and age-related changes in the stable isotope composition ($15N/14N$ and $13C/12C$) of millipedes and collembolans in a temperate forest soil. Pedobiologia, 2014, 57, 215-222.	0.5	20
47	On the discovery of a cave lion from the Malyi Anyui River (Chukotka, Russia). Quaternary Science Reviews, 2015, 117, 135-151.	1.4	19
48	Collapse of trophicâ€niche structure in belowground communities under anthropogenic disturbance. Ecosphere, 2018, 9, e02528.	1.0	19
49	Anthropogenic carbon as a basal resource in the benthic food webs in the Neva Estuary (Baltic Sea). Marine Pollution Bulletin, 2019, 146, 190-200.	2.3	19
50	Trophic interactions between Fusarium species and soil fauna: A meta-analysis of experimental studies. Applied Soil Ecology, 2020, 145, 103302.	2.1	19
51	Spruce girdling decreases abundance of fungivorous soil nematodes in a boreal forest. Soil Biology and Biochemistry, 2021, 155, 108184.	4.2	19
52	Trophic diversification in the evolution of predatory marine gastropods of the family Terebridae as inferred from stable isotope data. Marine Ecology - Progress Series, 2014, 497, 143-156.	0.9	18
53	Isotopic signature (15N/14N and 13C/12C) confirms similarity of trophic niches of millipedes (Myriapoda,) Tj ETC	0.1 0.78 0.1	4314 rgBT/(
54	Stable isotope composition (\hat{l} (sup>13 C and \hat{l} (sup>15 N values) of slime molds: placing bacterivorous soil protozoans in the food web context. Rapid Communications in Mass Spectrometry, 2015, 29, 1465-1472.	0.7	17

#	Article	IF	CITATIONS
55	Intra-body variation and ontogenetic changes in the isotopic composition $(13C/12C \text{ and } 15N/14N)$ of beetles (Coleoptera). Entomological Review, 2015, 95, 326-333.	0.1	17
56	Trophic position and seasonal changes in the diet of the red wood ant <i><scp>F</scp>ormica aquilonia</i> as indicated by stable isotope analysis. Ecological Entomology, 2017, 42, 263-272.	1.1	17
57	Influence of Lumbricus terrestris earthworms on the structure of the yeast community of forest litter. Microbiology, 2008, 77, 107-111.	0.5	16
58	Isotope analyses of amino acids in fungi and fungal feeding Diptera larvae allow differentiating ectomycorrhizal and saprotrophic fungiâ€based food chains. Functional Ecology, 2020, 34, 2375-2388.	1.7	16
59	The microfungal community of Lumbricus terrestris middens in a linden (Tilia cordata) forest. Pedobiologia, 2003, 47, 27-32.	0.5	15
60	Termites (Isoptera) in forest ecosystems of Cat Tien National Park (Southern Vietnam). Biology Bulletin, 2010, 37, 374-381.	0.1	15
61	Reproductively isolated ecotypes of killer whales Orcinus orca in the seas of the Russian Far East. Biology Bulletin, 2015, 42, 674-681.	0.1	15
62	Soil–litter nitrogen transfer and changes in δ13C and δ15N values in decomposing leaf litter during laboratory incubation. Pedobiologia, 2013, 56, 147-152.	0.5	14
63	Distribution of yeast complexes in the profiles of different soil types. Eurasian Soil Science, 2017, 50, 820-825.	0.5	14
64	A relative contribution of carbon from green tide algae Cladophora glomerata and Ulva intestinalis in the coastal food webs in the Neva Estuary (Baltic Sea). Marine Pollution Bulletin, 2018, 126, 43-50.	2.3	14
65	Prokaryotic community formation on polyethylene films incubated for six months in a tropical soil. Environmental Pollution, 2021, 269, 116126.	3.7	14
66	Peatland Development, Vegetation History, Climate Change and Human Activity in the Valdai Uplands (Central European Russia) during the Holocene: A Multi-Proxy Palaeoecological Study. Diversity, 2020, 12, 462.	0.7	13
67	Spatial variations in the trophic structure of soil animal communities in boreal forests of Pechora-Ilych Nature Reserve. Eurasian Soil Science, 2014, 47, 441-448.	0.5	12
68	Taxonomic resolution and functional traits in the analysis of tropical oribatid mite assemblages. Experimental and Applied Acarology, 2017, 73, 365-381.	0.7	12
69	Soil microarthropods and macrofauna in monsoon tropical forests of Cat Tien and Bi Dup-Nui Ba National Parks, southern Vietnam. Biology Bulletin, 2007, 34, 498-506.	0.1	11
70	Interaction of Invertebrates and Synthetic Polymers in Soil: A Review. Russian Journal of Ecology, 2020, 51, 503-517.	0.3	11
71	Daily and seasonal dynamics of CO2 fluxes from soils under different stands of monsoon tropical forest. Eurasian Soil Science, 2011, 44, 984-990.	0.5	10
72	Stable-Isotope Analysis as a Method of Taxonomical Identification of Archaeozoological Material. Archaeology, Ethnology and Anthropology of Eurasia, 2015, 43, 110-121.	0.1	9

#	Article	IF	CITATIONS
73	Trophic generalism at the population level in ground beetles (Coleoptera: Carabidae). Canadian Entomologist, 2016, 148, 284-293.	0.4	9
74	Dependence of epiphytic community on autochthonous and allochthonous sources of nitrogen in three forest habitats of southern Vietnam. Plant and Soil, 2019, 443, 565-574.	1.8	9
75	Different groups of groundâ€dwelling spiders share similar trophic niches in temperate forests. Ecological Entomology, 2020, 45, 1346-1356.	1.1	9
76	Detrital subsidy alters the soil invertebrate community and reduces infection of winter wheat seedlings by Fusarium wilt. Applied Soil Ecology, 2021, 163, 103914.	2.1	9
77	Soil microbiome, organic matter content and microbial abundance in forest and forest-derived land cover in Cat Tien National Park (Vietnam). Applied Soil Ecology, 2021, 165, 103957.	2.1	9
78	Wing morphology is linked to stable isotope composition of nitrogen and carbon in ground beetles (Coleoptera: Carabidae). European Journal of Entomology, 2015, 112, 810-817.	1.2	9
79	The diets of humpback whales (<i>Megaptera novaeangliae</i>) on the shelf and oceanic feeding grounds in the western North Pacific inferred from stable isotope analysis. Marine Mammal Science, 2013, 29, E253.	0.9	8
80	The Neanderthals of Okladnikov Cave Altai: Environment and Diet Based on Isotopic Analysis*. Archaeology, Ethnology and Anthropology of Eurasia, 2013, 41, 78-88.	0.1	8
81	Assimilation of labile carbon and particulate organic matter by tropical endogeic earthworms Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Biology Bulletin, 2015, 42, 696-701.	0.1	8
82	Consumption of aquatic subsidies by soil invertebrates in coastal ecosystems. Contemporary Problems of Ecology, 2016, 9, 396-406.	0.3	8
83	Flexible trophic position of polyphagous wireworms (Coleoptera, Elateridae): A stable isotope study in the steppe belt of Russia. Applied Soil Ecology, 2017, 121, 74-81.	2.1	8
84	Stable Isotope Trophic Fractionation (13C/12C and 15N/14N) in Mycophagous Diptera Larvae. Biology Bulletin, 2019, 46, 457-465.	0.1	8
85	Trophic structure of a tropical soil- and litter-dwelling oribatid mite community and consistency of trophic niches across biomes. Experimental and Applied Acarology, 2019, 78, 29-48.	0.7	8
86	Foraging behaviour as a mechanism for trophic niche separation in a millipede community of southern Vietnam. European Journal of Soil Biology, 2019, 90, 36-43.	1.4	8
87	Seasonal Migrations of Pantala flavescens (Odonata: Libellulidae) in Middle Asia and Understanding of the Migration Model in the Afro-Asian Region Using Stable Isotopes of Hydrogen. Insects, 2020, 11, 890.	1.0	8
88	Isotopic fractionation by saprotrophic microfungi: Effects of species, temperature and the age of colonies. Pedobiologia, 2010, 53, 213-217.	0.5	7
89	Collecting fungal mycelium using in-growth mesh bags: Effects of the sand particle size and seasonality. Pedobiologia, 2019, 77, 150591.	0.5	7
90	Stable C and N Isotope Composition of Suspended Particulate Organic Matter in the Neva Estuary: The Role of Abiotic Factors, Productivity, and Phytoplankton Taxonomic Composition. Journal of Marine Science and Engineering, 2020, 8, 959.	1.2	7

#	Article	IF	Citations
91	Soil arthropod communities are not affected by invasive Solidago gigantea Aiton (Asteraceae), based on morphology and metabarcoding analyses. Soil Biology and Biochemistry, 2021, 159, 108288.	4.2	7
92	Invasion patterns of Lumbricidae into the previously earthworm-free areas of northeastern Europe and the western Great Lakes region of North America., 2006,, 23-34.		6
93	Rapid extraction of invertebrates from tropical forest litter using modified Winkler apparatus. Journal of Tropical Ecology, 2015, 31, 191-194.	0.5	6
94	Non-indigenous amphipods and mysids in coastal food webs of eastern Baltic Sea estuaries. Journal of the Marine Biological Association of the United Kingdom, 2017, 97, 581-590.	0.4	6
95	Arthropod rain in a temperate forest: Intensity and composition. Pedobiologia, 2019, 75, 52-56.	0.5	6
96	Nitrogen Isotopes in Soils and Plants of Tundra Ecosystems in the Khibiny Mountains. Eurasian Soil Science, 2019, 52, 1195-1206.	0.5	6
97	Orchid epiphytes do not receive organic substances from living trees through fungi. Mycorrhiza, 2020, 30, 697-704.	1.3	6
98	Isotope evidence for latitudinal migrations of the dragonfly Sympetrum fonscolombii (Odonata:) Tj ETQq0 0 0 rg	BT_/Overlo	ock ₆ 10 Tf 50 4
99	Cyanobacteria as a Food Source for Invertebrates: Results of a Model Experiment. Russian Journal of Ecology, 2021, 52, 247-252.	0.3	6
100	Trophic niche differentiation in millipede communities of forests of the temperate and tropical belts. Moscow University Biological Sciences Bulletin, 2011, 66, 68-70.	0.1	5
101	Sex-related variation in $\hat{\Gamma}$ 15N values of ground beetles (Coleoptera, Carabidae): A case study. Pedobiologia, 2015, 58, 147-151.	0.5	5
102	Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.). Ecological Modelling, 2022, 465, 109856.	1.2	5
103	Trophic structure of ground-dwelling insects in the coastal zone of a salt lake in southern Siberia based on the data of isotopic analysis. Arid Ecosystems, 2015, 5, 222-229.	0.2	4
104	Isotopic Composition of Carbon in Humus Acids of Albic Retisols and Luvic Chernozems. Eurasian Soil Science, 2020, 53, 430-435.	0.5	4
105	Nitrogen Nutrition of Plants in an Alpine Lichen Heath under the Conditions of Soil Enrichment with Biogenic Elements. Russian Journal of Ecology, 2020, 51, 99-106.	0.3	4
106	Ecotype and geographical variation in carbon and nitrogen stable isotope values in western North Pacific killer whales (<scp><i>Orcinus orca</i></scp>). Marine Mammal Science, 2020, 36, 925-938.	0.9	4
107	Symbiotic Nitrogen Fixation by Legumes in Alpine Ecosystems: a Vegetation Experiment. Russian Journal of Ecology, 2021, 52, 9-17.	0.3	4
108	A mixotrophy is in question: new data on fungal community associated with photosynthetic terrestrial orchid Goodyera repens. Botanica Pacifica, 2018, 7, .	0.1	4

#	Article	IF	CITATIONS
109	Isotope markers of ecosystems and nutrition of the medieval rural population in the forest zone of European Russia. Rossijskaja Arheologija, 2020, , 79-95.	0.2	4
110	The isotopic signature of the "arthropod rain―in a temperate forest. Scientific Reports, 2022, 12, 321.	1.6	4
111	Changes in carbon and nitrogen isotope ratios (13C/12C and 15N/14N) in springtails during long-term storage of soil samples. Russian Journal of Ecology, 2016, 47, 572-574.	0.3	3
112	The trophic position of the alien crab Rhithropanopeus harrisii (crustacea decapoda panopeidae) in the Taman Bay, Sea of Azov community. Oceanology, 2017, 57, 289-297.	0.3	3
113	Soils and Nitrogen Nutrition of Plants in Alpine Ecosystems of the Northwest Caucasus under Long-Term Increase in Availability of Biogenic Elements. Eurasian Soil Science, 2020, 53, 1173-1181.	0.5	3
114	Trophic Structure of Small Invertebrates Inhabiting Litter of a Monsoon Tropical Forest. Russian Journal of Ecology, 2020, 51, 492-496.	0.3	3
115	Food-web modification in the eastern Gulf of Finland after invasion of Marenzelleria arctia (Spionidae, Polychaeta). NeoBiota, 0, 66, 75-94.	1.0	3
116	A Discovery of a cave lion (Panthera spelaea Goldfuss, 1810) skeleton in Russia. Doklady Biological Sciences, 2014, 455, 102-105.	0.2	2
117	Trophic-based diversification in benthivorous charrs (Salvelinus) dwelling littoral zones of Northern lakes. Hydrobiologia, 2021, 848, 4115-4133.	1.0	2
118	Fjordic Lagoons of the Barents Sea as Models for Study of the Dynamics of Coastal Communities with Alien Red King Crab (Paralithodes camtschaticus, Decapoda, Lithodidae). Biology Bulletin, 2020, 47, 1142-1158.	0.1	2
119	Origin of carbon in organic matter in the Neva estuary. Doklady Biological Sciences, 2015, 465, 289-290.	0.2	1
120	Changes in elemental and isotopic composition accompanying larval growth and metamorphosis of the moor frog. Russian Journal of Developmental Biology, 2017, 48, 41-48.	0.1	1
121	Isotopic Composition of Blood of Polar Bears (Ursus maritimus) of the Kara–Barents Sea Population. Doklady Biological Sciences, 2018, 480, 93-96.	0.2	1
122	Properties of the Yeast Communities Associated with Termites of a Tropical Monsoon Forest: Cat Tien National Park, Vietnam. Microbiology, 2021, 90, 489-499.	0.5	1
123	Trophic positions and niche segregation of two anuran species in the ecosystem of a forest lake. Hydrobiologia, 2021, 848, 4801-4814.	1.0	1
124	In the Memory of Our Teacher. Biology Bulletin, 2019, 46, 427-429.	0.1	0
125	Assimilation of Aboveground Litter Carbon Versus Soil Carbon by Collembola and Lumbricidae in Spruce Forest: A Litter Replacement Experiment. Polish Journal of Ecology, 2020, 68, .	0.2	0