
Hendrikus J Laanbroek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8330145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tannins from senescent Rhizophora mangle mangrove leaves have a distinctive effect on prokaryotic and eukaryotic communities in a Distichlis spicata salt marsh soil. FEMS Microbiology Ecology, 2020, 96, .	1.3	9
2	Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiology Reviews, 2020, 44, 874-908.	3.9	73
3	Saturated N2O emission rates occur above the nitrogen deposition level predicted for the semi-arid grasslands of Inner Mongolia, China. Geoderma, 2019, 341, 18-25.	2.3	24
4	A Physiological and Genomic Comparison of Nitrosomonas Cluster 6a and 7 Ammonia-Oxidizing Bacteria. Microbial Ecology, 2019, 78, 985-994.	1.4	38
5	Effects of Rhizophora mangle leaf litter and seedlings on carbon and nitrogen cycling in salt marshes – potential consequences of climate-induced mangrove migration. Plant and Soil, 2018, 426, 383-400.	1.8	10
6	Tide as Steering Factor in Structuring Archaeal and Bacterial Ammonia-Oxidizing Communities in Mangrove Forest Soils Dominated by Avicennia germinans and Rhizophora mangle. Microbial Ecology, 2018, 75, 997-1008.	1.4	18
7	Numerical Relationships Between Archaeal and Bacterial amoA Genes Vary by Icelandic Andosol Classes. Microbial Ecology, 2018, 75, 204-215.	1.4	4
8	The effects of condensed tannins derived from senescing Rhizophora mangle leaves on carbon, nitrogen and phosphorus mineralization in a Distichlis spicata salt marsh soil. Plant and Soil, 2018, 433, 37-53.	1.8	8
9	The distribution of sediment and water column nitrification potential in the hyper-turbid Ems estuary. Aquatic Sciences, 2018, 80, 1.	0.6	15
10	Soil warming and fertilization altered rates of nitrogen transformation processes and selected for adapted ammonia-oxidizing archaea in sub-arctic grassland soil. Soil Biology and Biochemistry, 2017, 107, 114-124.	4.2	24
11	Potential for Sulfate Reduction in Mangrove Forest Soils: Comparison between Two Dominant Species of the Americas. Frontiers in Microbiology, 2016, 7, 1855.	1.5	15
12	Effects of Bacterial Community Members on the Proteome of the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain Is79. Applied and Environmental Microbiology, 2016, 82, 4776-4788.	1.4	45
13	Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil. Scientific Reports, 2016, 6, 30349.	1.6	99
14	Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil. Standards in Genomic Sciences, 2016, 11, 46.	1.5	22
15	Phylogenetic Characterization of Phosphatase-Expressing Bacterial Communities in Baltic Sea Sediments. Microbes and Environments, 2015, 30, 192-195.	0.7	4
16	The effect of human settlement on the abundance and community structure of ammonia oxidizers in tropical stream sediments. Frontiers in Microbiology, 2015, 6, 898.	1.5	8
17	Shifts in the pelagic ammonia-oxidizing microbial communities along the eutrophic estuary of Yong River in Ningbo City, China. Frontiers in Microbiology, 2015, 6, 1180.	1.5	31
18	Potential Activity, Size, and Structure of Sulfate-Reducing Microbial Communities in an Exposed, Grazed and a Sheltered, Non-Grazed Mangrove Stand at the Red Sea Coast. Frontiers in Microbiology, 2015, 6, 1478.	1.5	8

Hendrikus J Laanbroek

#	Article	IF	CITATIONS
19	Nitrate ammonification in mangrove soils: a hidden source of nitrite?. Frontiers in Microbiology, 2015, 6, 166.	1.5	18
20	Ammonia-limited conditions cause of Thaumarchaeal dominance in volcanic grassland soil. FEMS Microbiology Ecology, 2015, 91, .	1.3	29
21	Short- and long-term effects of nutrient enrichment on microbial exoenzyme activity in mangrove peat. Soil Biology and Biochemistry, 2015, 81, 38-47.	4.2	55
22	Effect of Redox Conditions on Bacterial Community Structure in Baltic Sea Sediments with Contrasting Phosphorus Fluxes. PLoS ONE, 2014, 9, e92401.	1.1	12
23	The influence of human settlement on the distribution and diversity of iron-oxidizing bacteria belonging to the Gallionellaceae in tropical streams. Frontiers in Microbiology, 2014, 5, 630.	1.5	13
24	Effects of increased summer flooding on nitrogen dynamics in impounded mangroves. Journal of Environmental Management, 2014, 139, 217-226.	3.8	20
25	Interactions between Thaumarchaea, <i>Nitrospira</i> and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME Journal, 2014, 8, 2397-2410.	4.4	121
26	Nitrification in Inland Waters. , 2014, , 385-403.		3
27	Effect of the aerenchymatous helophyte Glyceria maxima on the sulfate-reducing communities in two contrasting riparian grassland soils. Plant and Soil, 2013, 370, 73-87.	1.8	2
28	Does microbial stoichiometry modulate eutrophication of aquatic ecosystems?. Environmental Microbiology, 2013, 15, 1572-1579.	1.8	16
29	Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake. FEMS Microbiology Ecology, 2013, 83, 515-526.	1.3	33
30	Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil. Soil Biology and Biochemistry, 2013, 57, 822-829.	4.2	51
31	Temporal and Spatial Coexistence of Archaeal and Bacterial <i>amoA</i> Genes and Gene Transcripts in Lake Lucerne. Archaea, 2013, 2013, 1-11.	2.3	27
32	Changes in community composition of ammonia-oxidizing betaproteobacteria from stands of Black mangrove (Avicennia germinans) in response to ammonia enrichment and more oxic conditions. Frontiers in Microbiology, 2013, 4, 343.	1.5	10
33	Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations. Standards in Genomic Sciences, 2013, 7, 469-482.	1.5	43
34	Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating. Frontiers in Microbiology, 2012, 3, 352.	1.5	36
35	The distribution of ammonia-oxidizing betaproteobacteria in stands of Black mangroves (Avicennia) Tj ETQq1 1	0.784314 1.5	rgBT /Overloc
36	Spatial Patterns of Iron- and Methane-Oxidizing Bacterial Communities in an Irregularly Flooded, Riparian Wetland. Frontiers in Microbiology, 2012, 3, 64.	1.5	32

#	Article	IF	CITATIONS
37	Isolation, Cultivation, and Characterization of Ammonia-Oxidizing Bacteria and Archaea Adapted to Low Ammonium Concentrations. Methods in Enzymology, 2011, 486, 55-88.	0.4	53
38	Genome Sequence of <i>Nitrosomonas</i> sp. Strain AL212, an Ammonia-Oxidizing Bacterium Sensitive to High Levels of Ammonia. Journal of Bacteriology, 2011, 193, 6112-6112.	1.0	10
39	Genome Sequence of Nitrosomonas sp. Strain AL212, an Ammonia-Oxidizing Bacterium Sensitive to High Levels of Ammonia. Journal of Bacteriology, 2011, 193, 5047-5048.	1.0	35
40	Distribution and Diversity of <i>Gallionella</i> -Like Neutrophilic Iron Oxidizers in a Tidal Freshwater Marsh. Applied and Environmental Microbiology, 2011, 77, 2337-2344.	1.4	37
41	Phosphatases relieve carbon limitation of microbial activity in Baltic Sea sediments along a redoxâ€gradient. Limnology and Oceanography, 2011, 56, 2018-2026.	1.6	63
42	Response of the Sulfate-Reducing Community to the Re-establishment of Estuarine Conditions in Two Contrasting Soils: a Mesocosm Approach. Microbial Ecology, 2010, 59, 109-120.	1.4	11
43	Repression of potential nitrification activities by matgrass sward species. Plant and Soil, 2010, 337, 435-445.	1.8	14
44	Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany, 2010, 105, 141-153.	1.4	320
45	Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting <i>Gallionella-</i> related bacteria. ISME Journal, 2009, 3, 715-725.	4.4	73
46	A nested PCR approach for improved recovery of archaeal 16S rRNA gene fragments from freshwater samples. FEMS Microbiology Letters, 2009, 298, 193-198.	0.7	51
47	Population Dynamics and Diversity of Viruses, Bacteria and Phytoplankton in a Shallow Eutrophic Lake. Microbial Ecology, 2008, 56, 29-42.	1.4	43
48	Biogeography of sulfate-reducing prokaryotes in river floodplains. FEMS Microbiology Ecology, 2008, 64, 395-406.	1.3	36
49	Niche separation of ammoniaâ€oxidizing bacteria across a tidal freshwater marsh. Environmental Microbiology, 2008, 10, 3017-3025.	1.8	34
50	Limitations of the use of group-specific primers in real-time PCR as appear from quantitative analyses of closely related ammonia-oxidising species. Water Research, 2008, 42, 1093-1101.	5.3	9
51	Epiphyton as a Niche for Ammonia-Oxidizing Bacteria: Detailed Comparison with Benthic and Pelagic Compartments in Shallow Freshwater Lakes. Applied and Environmental Microbiology, 2008, 74, 1963-1971.	1.4	21
52	Improved PCR-DGGE for high resolution diversity screening of complex sulfate-reducing prokaryotic communities in soils and sediments. Journal of Microbiological Methods, 2007, 70, 103-111.	0.7	45
53	Response of nitrogen dynamics in semi-natural and agricultural grassland soils to experimental variation in tide and salinity. Plant and Soil, 2007, 292, 45-61.	1.8	15
54	Water Management Strategies Against Toxic Microcystis Blooms In The Dutch Delta. , 2006, 16, 313-327.		103

#	Article	IF	CITATIONS
55	The influence of Clyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community. FEMS Microbiology Ecology, 2006, 22, 57-63.	1.3	30
56	Animal–plant–microbe interactions: direct and indirect effects of swan foraging behaviour modulate methane cycling in temperate shallow wetlands. Oecologia, 2006, 149, 233-244.	0.9	32
57	New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers. FEMS Microbiology Ecology, 2005, 52, 163-174.	1.3	38
58	Effect of salinity on temporal and spatial dynamics of ammonia-oxidising bacteria from intertidal freshwater sediment. FEMS Microbiology Ecology, 2005, 53, 359-368.	1.3	53
59	Nutrient Limitation of Freshwater Cyanobacteria. , 2005, , 65-86.		26
60	Denaturing Gradient Gel Electrophoretic Analysis of Ammonia-Oxidizing Bacterial Community Structure in the Lower Seine River: Impact of Paris Wastewater Effluents. Applied and Environmental Microbiology, 2004, 70, 6726-6737.	1.4	102
61	Analysis of Structural and Physiological Profiles To Assess the Effects of Cu on Biofilm Microbial Communities. Applied and Environmental Microbiology, 2004, 70, 4512-4521.	1.4	56
62	Nitrous oxide production in grassland soils: assessing the contribution of nitrifier denitrification. Soil Biology and Biochemistry, 2004, 36, 229-236.	4.2	128
63	Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale. FEMS Microbiology Ecology, 2004, 47, 13-18.	1.3	63
64	Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology, 2004, 47, 265-277.	1.3	639
65	Selective grazing by adults and larvae of the zebra mussel (Dreissena polymorpha): application of flow cytometry to natural seston. Freshwater Biology, 2004, 49, 116-126.	1.2	79
66	Detecting the phosphate status of phytoplankton by enzyme-labelled fluorescence and flow cytometry. FEMS Microbiology Ecology, 2004, 48, 29-38.	1.3	42
67	Growth at Low Ammonium Concentrations and Starvation Response as Potential Factors Involved in Niche Differentiation among Ammonia-Oxidizing Bacteria. Applied and Environmental Microbiology, 2002, 68, 4751-4757.	1.4	176
68	Nitrite as a Stimulus for Ammonia-Starved Nitrosomonas europaea. Applied and Environmental Microbiology, 2002, 68, 1454-1457.	1.4	25
69	Factors controlling nitrous oxide at the microbial community and estuarine scale. Marine Ecology - Progress Series, 2002, 240, 1-9.	0.9	70
70	Weakened Activity of Starved Ammonia-oxidizing Bacteria by the Presence of Pre-activated Nitrobacter winogradskyi Microbes and Environments, 2002, 17, 122-127.	0.7	9
71	Nitrification in the Schelde estuary: methodological aspects and factors influencing its activity. , 2002, 42, 99-107.		24
72	Nitrification in the Schelde estuary: methodological aspects and factors influencing its activity. FEMS Microbiology Ecology, 2002, 42, 99-107.	1.3	28

#	Article	IF	CITATIONS
73	Improved nitrogen removal by application of new nitrogen-cycle bacteria. Reviews in Environmental Science and Biotechnology, 2002, 1, 51-63.	3.9	88
74	Origin, causes and effects of increased nitrite concentrations in aquatic environments. Reviews in Environmental Science and Biotechnology, 2002, 1, 115-141.	3.9	282
75	Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary. Aquatic Microbial Ecology, 2002, 28, 239-247.	0.9	71
76	Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations. FEMS Microbiology Ecology, 2001, 37, 211-221.	1.3	97
77	Microvariation Artifacts Introduced by PCR and Cloning of Closely Related 16S rRNA Gene Sequences. Applied and Environmental Microbiology, 2001, 67, 469-472.	1.4	219
78	Shifts in the dominant populations of ammonia-oxidizing b-subclass Proteobacteria along the eutrophic Schelde estuary. Aquatic Microbial Ecology, 2001, 23, 225-236.	0.9	105
79	Changes in Bacterial and Eukaryotic Community Structure after Mass Lysis of Filamentous Cyanobacteria Associated with Viruses. Applied and Environmental Microbiology, 1999, 65, 795-801.	1.4	294
80	Ammonium addition inhibits 13C-methane incorporation into methanotroph membrane lipids in a freshwater sediment. FEMS Microbiology Ecology, 1999, 29, 81-89.	1.3	49
81	Genetic changes in the bacterial community structure associated with protistan grazers. Fundamental and Applied Limnology, 1999, 145, 25-38.	0.4	49
82	Detritus-Dependent Development of the Microbial Community in an Experimental System: Qualitative Analysis by Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 1999, 65, 2478-2484.	1.4	196
83	Interactions between nitrifying and denitrifying bacteria in gnotobiotic microcosms planted with the emergent macrophyte Clyceria maxima. FEMS Microbiology Ecology, 1998, 25, 63-78.	1.3	40
84	Divergent members of the bacterial division Verrucomicrobiales in a temperate freshwater lake. FEMS Microbiology Ecology, 1998, 25, 159-169.	1.3	97
85	Ammonium-induced inhibition of ammonium-starved Nitrosomonas europaea cells in soil and sand slurries. FEMS Microbiology Ecology, 1998, 26, 269-280.	1.3	29
86	Competition for nitrate and glucose between Pseudomonas fluorescens and Bacillus licheniformis under continuous or fluctuating anoxic conditions. FEMS Microbiology Ecology, 1998, 26, 345-356.	1.3	11
87	Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation. FEMS Microbiology Ecology, 1998, 27, 339-350.	1.3	149
88	Recovery of a Nitrosomonas-like 16S rDNA Sequence Group from Freshwater Habitats. Systematic and Applied Microbiology, 1998, 21, 321-330.	1.2	83
89	Nearly Identical 16S rRNA Sequences Recovered from Lakes in North America and Europe Indicate the Existence of Clades of Globally Distributed Freshwater Bacteria. Systematic and Applied Microbiology, 1998, 21, 546-556.	1.2	187
90	REVEALING GENETIC DIVERSITY OF EUKARYOTIC MICROORGANISMS IN AQUATIC ENVIRONMENTS BY DENATURING GRADIENT GEL ELECTROPHORESIS. Journal of Phycology, 1998, 34, 206-213.	1.0	118

#	Article	IF	CITATIONS
91	Contribution of nitrification and denitrification to the no and N2O emissions of an acid forest soil, a river sediment and a fertilized grassland soil. Soil Biology and Biochemistry, 1997, 29, 1655-1664.	4.2	55
92	Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition. Soil Biology and Biochemistry, 1997, 29, 1625-1632.	4.2	70
93	Title is missing!. Plant and Soil, 1997, 190, 91-103.	1.8	47
94	Oxygen uptake kinetics of Pseudomonas chlororaphis grown in glucose- or glutamate-limited continuous cultures. Archives of Microbiology, 1997, 167, 392-395.	1.0	18
95	The Fate of 15 N-Nitrate in Healthy and Declining Phragmites australis Stands. Microbial Ecology, 1997, 34, 254-262.	1.4	34
96	Spatial distribution and inhibition by ammonium of methane oxidation in intertidal freshwater marshes. Applied and Environmental Microbiology, 1997, 63, 4734-4740.	1.4	56
97	Effects of Nitrate Availability and the Presence of Glyceria maxima on the Composition and Activity of the Dissimilatory Nitrate-Reducing Bacterial Community. Applied and Environmental Microbiology, 1997, 63, 931-937.	1.4	64
98	Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples. FEMS Microbiology Ecology, 1996, 20, 111-120.	1.3	2
99	Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples1. FEMS Microbiology Ecology, 1996, 20, 111-120.	1.3	35
100	Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Applied and Environmental Microbiology, 1996, 62, 4100-4107.	1.4	194
101	Competition for ammonium between plant roots and nitrifying and heterotrophic bacteria and the effects of protozoan grazing. Plant and Soil, 1995, 170, 241-250.	1.8	94
102	Ammonium-oxidation at low pH by a chemolithotrophic bacterium belonging to the genus Nitrosospira. Soil Biology and Biochemistry, 1995, 27, 127-132.	4.2	60
103	Activity of Chemolithotrophic Nitrifying Bacteria under Stress in Natural Soils. Advances in Microbial Ecology, 1995, , 275-304.	0.1	41
104	Chemiluminescence analysis of nitric oxide in small-volume samples by a modified injection method. Biology and Fertility of Soils, 1994, 18, 260-262.	2.3	9
105	Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations. Archives of Microbiology, 1994, 161, 156-162.	1.0	124
106	Competition for ammonium between nitrifying bacteria and plant roots in soil in pots; effects of grazing by flagellates and fertilization. Soil Biology and Biochemistry, 1994, 26, 89-96.	4.2	65
107	Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations. Archives of Microbiology, 1994, 161, 156-162.	1.0	12
108	Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures. Archives of Microbiology, 1993, 159, 453-459.	1.0	189

#	Article	IF	CITATIONS
109	Effects of Grazing by Flagellates on Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Soil Columns. Applied and Environmental Microbiology, 1993, 59, 2099-2106.	1.4	49
110	The chemolithotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to ph-dependent nitrifying activity. Soil Biology and Biochemistry, 1992, 24, 229-234.	4.2	110
111	The bioenergetics of ammonia and hydroxylamine oxidation in Nitrosomonas europaea at acid and alkaline pH. Archives of Microbiology, 1992, 157, 194-199.	1.0	82
112	Secondary transport of amino acids in Nitrosomonas europaea. Archives of Microbiology, 1992, 157, 389-393.	1.0	16
113	Kinetics of nitrite oxidation in two Nitrobacter species grown in nitrite-limited chemostats. Archives of Microbiology, 1992, 157, 436-441.	1.0	31
114	The occurrence of chemolitho-autotrophic nitrifiers in water-saturated grassland soils. Microbial Ecology, 1992, 23, 15-26.	1.4	41
115	Temporal and spatial variation in the nitrite-oxidizing bacterial community of a grassland soil. FEMS Microbiology Letters, 1992, 101, 99-112.	0.7	7
116	Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Continuously Percolated Soil Columns. Applied and Environmental Microbiology, 1992, 58, 3303-3311.	1.4	97
117	Effects of Grazing by Flagellates on Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Chemostats. Applied and Environmental Microbiology, 1992, 58, 1962-1969.	1.4	44
118	Effect of nitrite concentration and pH on most probable number enumerations of non-growingNitrobacterspp FEMS Microbiology Letters, 1991, 85, 269-278.	0.7	14
119	The effect of the incubation period on the result of MPN enumerations of nitrite-oxidizing bacteria: theoretical considerations. FEMS Microbiology Letters, 1991, 85, 335-344.	0.7	18
120	Effects of organic manure on nitrification in arable soils. Biology and Fertility of Soils, 1991, 12, 147-153.	2.3	29
121	Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Dual Energy-Limited Chemostats. Applied and Environmental Microbiology, 1991, 57, 3255-3263.	1.4	208
122	Nitrification at Low pH by Aggregated Chemolithotrophic Bacteria. Applied and Environmental Microbiology, 1991, 57, 3600-3604.	1.4	163
123	Enumeration of nitrite-oxidizing bacteria in grassland soils using a Most Probable Number technique: Effect of nitrite concentration and sampling procedure. FEMS Microbiology Letters, 1990, 74, 277-285.	0.7	25
124	Most Probable Numbers of chemolitho-autotrophic nitrite-oxidizing bacteria in well drained grassland soils: Stimulation by high nitrite concentrations. FEMS Microbiology Letters, 1990, 74, 287-293.	0.7	22
125	Bacterial cycling of minerals that affect plant growth in waterlogged soils: a review. Aquatic Botany, 1990, 38, 109-125.	0.8	185
126	Ureolytic nitrification at low pH by Nitrosospira spec Archives of Microbiology, 1989, 152, 178-181.	1.0	71

Hendrikus J Laanbroek

#	Article	IF	CITATIONS
127	Urea stimulated autotrophic nitrification in suspensions of fertilized, acid heath soil. Soil Biology and Biochemistry, 1989, 21, 349-354.	4.2	65
128	Autotrophic nitrification in a fertilized acid heath soil. Soil Biology and Biochemistry, 1988, 20, 845-850.	4.2	99
129	Seasonal changes in percentages of attached bacteria enumerated in a tidal and a stagnant coastal basin: relation to bacterioplankton productivity. FEMS Microbiology Letters, 1986, 38, 87-98.	0.7	10
130	Tidal variations in bacterial biomass, productivity and oxygen uptake rates in a shallow channel in the Oosterschelde basin, The Netherlands. Marine Ecology - Progress Series, 1986, 29, 1-5.	0.9	14
131	Variability in fermentation patterns of sugar-utilizing bacteria isolated from anaerobic, intertidal sediments. Microbial Ecology, 1985, 11, 117-125.	1.4	5
132	Distribution of phyto- and bacterioplankton growth and biomass parameters, dissolved inorganic nutrients and free amino acids during a spring bloom in the Oosterschelde basin, The Netherlands. Marine Ecology - Progress Series, 1985, 25, 1-11.	0.9	48
133	Competition for Sulfate and Ethanol Among <i>Desulfobacter, Desulfobulbus</i> , and <i>Desulfovibrio</i> Species Isolated from Intertidal Sediments. Applied and Environmental Microbiology, 1984, 47, 329-334.	1.4	133
134	Competition for L-lactate betweenDesulfovibrio, Veillonella, andAcetobacterium species isolated from anaerobic intertidal sediments. Microbial Ecology, 1983, 9, 341-354.	1.4	34
135	Influence of clay particles (Illite) on substrate utilization by sulfate-reducing bacteria. Archives of Microbiology, 1983, 134, 161-163.	1.0	17
136	Microbial interactions in sediment communities. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1982, 297, 533-550.	2.4	54
137	Alcohol conversion by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Archives of Microbiology, 1982, 133, 178-184.	1.0	130
138	Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments. Archives of Microbiology, 1981, 128, 330-335.	1.0	243
139	Growth yield and energy generation in anaerobically-grown Campylobacter spec Archives of Microbiology, 1979, 120, 47-51.	1.0	10
140	Competition for L-glutamate between specialised and versatile Clostridium species. Archives of Microbiology, 1979, 120, 61-66.	1.0	37
141	l-Aspartate fermentation by a free-livingCampylobacter species. Archives of Microbiology, 1978, 117, 109-114.	1.0	28
142	Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions. Archives of Microbiology, 1978, 119, 99-102.	1.0	70
143	Isolation of an aspartate-fermenting, free-living campylobacter species. FEMS Microbiology Letters, 1977, 1, 99-102.	0.7	3