
David Crich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8329976/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unusual C–C bond cleavage of an α-trifloxy Sialic acid hemiacetal under Lattrell-Dax conditions. Carbohydrate Research, 2022, 511, 108494.	1.1	0
2	Exploring Noncovalent Protease Inhibitors for the Treatment of Severe Acute Respiratory Syndrome and Severe Acute Respiratory Syndrome-Like Coronaviruses. ACS Infectious Diseases, 2022, 8, 596-611.	1.8	6
3	Synthesis of 10-Aza-9-oxakalkitoxin by N–O Bond Formation. Organic Letters, 2022, 24, 1833-1836.	2.4	5
4	Structureâ€Activity Relationships for 5′′ Modifications of 4,5â€Aminoglycoside Antibiotics. ChemMedChem 2022, 17, .	' 1.6	7
5	Side Chain Conformation and Its Influence on Glycosylation Selectivity in Hexo- and Higher Carbon Furanosides. Journal of Organic Chemistry, 2022, 87, 316-339.	1.7	7
6	The <i>N,N,O</i> -Trisubstituted Hydroxylamine Isostere and Its Influence on Lipophilicity and Related Parameters. ACS Medicinal Chemistry Letters, 2022, 13, 799-806.	1.3	4
7	Syntheses of Legionaminic Acid, Pseudaminic Acid, Acetaminic Acid, 8- <i>epi</i> -Acetaminic Acid, and 8- <i>epi</i> -Legionaminic Acid Glycosyl Donors from <i>N</i> -Acetylneuraminic Acid by Side Chain Exchange. Organic Letters, 2022, 24, 2998-3002.	2.4	5
8	Influence of 3â€Thio Substituents on Benzylideneâ€Directed Mannosylation. Isolation of a Bridged Pyridinium Ion and Effects of 3â€ <i>O</i> â€Picolyl and 3â€ <i>S</i> â€Picolyl Esters. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
9	An Advanced Apralog with Increased inâ€vitro and inâ€vivo Activity toward Gramâ€negative Pathogens and Reduced ex vivo Cochleotoxicity. ChemMedChem, 2021, 16, 335-339.	1.6	20
10	En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. Journal of the American Chemical Society, 2021, 143, 17-34.	6.6	82
11	Influence of ring size in conformationally restricted ring I analogs of paromomycin on antiribosomal and antibacterial activity. RSC Medicinal Chemistry, 2021, 12, 1585-1591.	1.7	3
12	Polyphenols as alternative treatments of COVID-19. Computational and Structural Biotechnology Journal, 2021, 19, 5371-5380.	1.9	8
13	Influence of substitution at the 5α-Position on the side chain conformation of glucopyranosides. Carbohydrate Research, 2021, 500, 108254.	1.1	3
14	Side Chain Conformation Restriction in the Catalysis of Glycosidic Bond Formation by Leloir Glycosyltransferases, Glycoside Phosphorylases, and Transglycosidases. ACS Catalysis, 2021, 11, 5069-5078.	5.5	9
15	Synthesis and Antibacterial Activity of Propylamycin Derivatives Functionalized at the 5′′- and Other Positions with a View to Overcoming Resistance Due to Aminoglycoside Modifying Enzymes. ACS Infectious Diseases, 2021, 7, 2413-2424.	1.8	11
16	Synthesis of O-tert-Butyl-N,N-disubstituted Hydroxylamines by N–O Bond Formation. Organic Letters, 2021, 23, 6396-6400.	2.4	8
17	GH47 and Other Glycoside Hydrolases Catalyze Glycosidic Bond Cleavage with the Assistance of Substrate Super-Arming at the Transition State. ACS Catalysis, 2021, 11, 10308-10315.	5.5	1
18	Influence of Configuration at the 4- and 6-Positions on the Conformation and Anomeric Reactivity and Selectivity of 7-Deoxyheptopyranosyl Donors: Discovery of a Highly Equatorially Selective <scp>l</scp> - <i>glycero</i> - <scp>d</scp> - <i>gluco</i> -Heptopyranosyl Donor. Journal of Organic Chemistry, 2021, 86, 12199-12225.	1.7	11

#	Article	IF	CITATIONS
19	Guidelines for <i>O</i> -Glycoside Formation from First Principles. ACS Central Science, 2021, 7, 1454-1462.	5.3	41
20	Direct Experimental Characterization of a Bridged Bicyclic Glycosyl Dioxacarbenium Ion by ¹ H and ¹³ Câ€NMR Spectroscopy: Importance of Conformation on Participation by Distal Esters. Angewandte Chemie - International Edition, 2021, 60, 25397-25403.	7.2	15
21	Antibacterial activity of apramycin at acidic pH warrants wide therapeutic window in the treatment of complicated urinary tract infections and acute pyelonephritis. EBioMedicine, 2021, 73, 103652.	2.7	15
22	Polyphenols as Potential Inhibitors of SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp). Molecules, 2021, 26, 7438.	1.7	10
23	Synthesis of Bradyrhizose from <scp>d</scp> -Glucose. Organic Letters, 2020, 22, 523-527.	2.4	9
24	Aminoglycosides: Time for the Resurrection of a Neglected Class of Antibacterials?. ACS Infectious Diseases, 2020, 6, 168-172.	1.8	47
25	Apralogs: Apramycin 5- <i>O</i> -Glycosides and Ethers with Improved Antibacterial Activity and Ribosomal Selectivity and Reduced Susceptibility to the Aminoacyltransferase (3)-IV Resistance Determinant. Journal of the American Chemical Society, 2020, 142, 530-544.	6.6	30
26	Influence of protecting groups on O- and C-glycosylation with neuraminyl and ulosonyl dibutylphosphates. Carbohydrate Research, 2020, 496, 108100.	1.1	5
27	Glycoside Hydrolases Restrict the Side Chain Conformation of Their Substrates To Gain Additional Transition State Stabilization. Journal of the American Chemical Society, 2020, 142, 16965-16973.	6.6	17
28	Synthesis of 3-Deoxy- <scp>d</scp> - <i>manno</i> -oct-2-ulosonic Acid (KDO) and Pseudaminic Acid <i>C</i> -Glycosides. Journal of Organic Chemistry, 2020, 85, 16035-16042.	1.7	11
29	Predictive Analysis of the Side Chain Conformation of the Higher Carbon Sugars: Application to the Preorganization of the Aminoglycoside Ring 1 Side Chain for Binding to the Bacterial Ribosomal Decoding A Site. Journal of Organic Chemistry, 2020, 85, 16043-16059.	1.7	13
30	Diversity-Oriented Synthesis of N,N,O-Trisubstituted Hydroxylamines from Alcohols and Amines by N–O Bond Formation. Journal of the American Chemical Society, 2020, 142, 14820-14825.	6.6	20
31	Synthesis, Cytotoxicity, and Genotoxicity of 10-Aza-9-oxakalkitoxin, an <i>N</i> , <i>N</i> , <i>O</i> -Trisubstituted Hydroxylamine Analog, or Hydroxalog, of a Marine Natural Product. Journal of the American Chemical Society, 2020, 142, 9147-9151.	6.6	9
32	Characterization and Noncovalent Inhibition of the Deubiquitinase and deISGylase Activity of SARS-CoV-2 Papain-Like Protease. ACS Infectious Diseases, 2020, 6, 2099-2109.	1.8	239
33	Mechanisms of Stereodirecting Participation and Ester Migration from Near and Far in Glycosylation and Related Reactions. Chemical Reviews, 2020, 120, 7104-7151.	23.0	124
34	Use of hydroxylamines, hydroxamic acids, oximes and amines as nucleophiles in the Zbiral oxidative deamination of N-acetyl neuraminic acid. Isolation and characterization of novel mono- and disubstitution products. Carbohydrate Research, 2020, 490, 107921.	1.1	5
35	Synthesis of Gentamicin Minor Components: Gentamicin B1 and Gentamicin X2. Organic Letters, 2020, 22, 3850-3854.	2.4	6
36	Stereospecific synthesis of methyl 2-amino-2,4-dideoxy-6S-deuterio-α-D-xylo-hexopyranoside and methyl 2-amino-2,4-dideoxy-6S-deuterio-4-propyl-α-d-glucopyranoside: Side chain conformation of the novel aminoglycoside antibiotic propylamycin. Carbohydrate Research, 2020, 491, 107984.	1.1	8

#	Article	IF	CITATIONS
37	Synthesis of a Pseudodisaccharide Suitable for Synthesis of Ring I Modified 4,5-2-Deoxystreptamine Type Aminoglycoside Antibiotics. Journal of Organic Chemistry, 2020, 85, 7583-7587.	1.7	11
38	Stereocontrolled Synthesis of the Equatorial Glycosides of 3-Deoxy- <scp>d</scp> -manno-oct-2-ulosonic Acid: Role of Side Chain Conformation. Journal of the American Chemical Society, 2020, 142, 7760-7764.	6.6	25
39	Oxidative deamination of amino sugars: recent advances. Carbohydrate Chemistry, 2020, , 1-30.	0.3	1
40	Dissociation between hypothermia and neurotoxicity caused by mephedrone and methcathinone in TPH2 knockout mice. Psychopharmacology, 2019, 236, 1097-1106.	1.5	5
41	Use of Phenols as Nucleophiles in the Zbiral Oxidative Deamination of <i>N</i> -Acetyl Neuraminic Acid: Isolation and Characterization of Tricyclic 3-Keto-2-deoxy-nonulosonic Acid (KDN) Derivatives via an Intermediate Vinyl Diazonium Ion. Journal of Organic Chemistry, 2019, 84, 14688-14700.	1.7	10
42	Use of a fluorescence assay to determine relative affinities of semisynthetic aminoglycosides to small RNAs representing bacterial and mitochondrial A sites. Bioorganic and Medicinal Chemistry, 2019, 27, 115121.	1.4	4
43	Modification at the 2′-Position of the 4,5-Series of 2-Deoxystreptamine Aminoglycoside Antibiotics To Resist Aminoglycoside Modifying Enzymes and Increase Ribosomal Target Selectivity. ACS Infectious Diseases, 2019, 5, 1718-1730.	1.8	23
44	<i>In vitro</i> activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and <i>Acinetobacter baumannii</i> . Journal of Antimicrobial Chemotherapy, 2019, 74, 944-952.	1.3	76
45	Synthesis, ribosomal selectivity, and antibacterial activity of netilmicin 4′-derivatives. MedChemComm, 2019, 10, 946-950.	3.5	1
46	Synthesis of saccharocin from apramycin and evaluation of its ribosomal selectivity. MedChemComm, 2019, 10, 554-558.	3.5	6
47	Synthesis and Evaluation of Oligomeric Thioether-Linked Carbacyclic β-(1→3)-Glucan Mimetics. Journal of Organic Chemistry, 2019, 84, 5554-5563.	1.7	11
48	Design, Multigram Synthesis, and in Vitro and in Vivo Evaluation of Propylamycin: A Semisynthetic 4,5-Deoxystreptamine Class Aminoglycoside for the Treatment of Drug-Resistant Enterobacteriaceae and Other Gram-Negative Pathogens. Journal of the American Chemical Society, 2019, 141, 5051-5061.	6.6	46
49	Allylic strain as a stereocontrol element in the hydrogenation of 3-hydroxymethyl-cyclohex-3-en-1,2,5-triol derivatives. Synthesis ofÂthe carbasugar pseudo-2-deoxy-α-d-glucopyranose. Tetrahedron, 2018, 74, 5183-5191.	1.0	2
50	Effects of the 1- <i>N</i> -(4-Amino-2 <i>S</i> -hydroxybutyryl) and 6′- <i>N</i> -(2-Hydroxyethyl) Substituents on Ribosomal Selectivity, Cochleotoxicity, and Antibacterial Activity in the Sisomicin Class of Aminoglycoside Antibiotics. ACS Infectious Diseases, 2018, 4, 1114-1120.	1.8	22
51	Assessing the role of dopamine in the differential neurotoxicity patterns of methamphetamine, mephedrone, methcathinone and 4-methylmethamphetamine. Neuropharmacology, 2018, 134, 46-56.	2.0	23
52	Synthesis of Conformationally-Locked <i><i>ci><i><i><i>> and <i><i>trans</i></i>Bicyclo[4.4.0] Mono-, Di-, and Trioxadecane Modifications of Galacto- and Glucopyranose; Experimental Limiting ³<i>J</i></i></i></i></i></i>	1.7	20
53	Synthesis and Evaluation of 1,5-Dithia- <scp>d</scp> -laminaribiose, Triose, and Tetraose as Truncated β-(1→3)-Glucan Mimetics. Journal of Organic Chemistry, 2018, 83, 14894-14904.	1.7	15
54	Synthesis and Stereocontrolled Equatorially Selective Glycosylation Reactions of a Pseudaminic Acid Donor: Importance of the Side-Chain Conformation and Regioselective Reduction of Azide Protecting Groups. Journal of the American Chemical Society, 2018, 140, 15008-15015.	6.6	41

#	Article	IF	CITATIONS
55	The Experimental Evidence in Support of Glycosylation Mechanisms at the S _N 1–S _N 2 Interface. Chemical Reviews, 2018, 118, 8242-8284.	23.0	246
56	Interplay of Protecting Groups and Side Chain Conformation in Glycopyranosides. Modulation of the Influence of Remote Substituents on Glycosylation?. Journal of Organic Chemistry, 2018, 83, 10334-10351.	1.7	22
57	Dissecting the Influence of Two Structural Substituents on the Differential Neurotoxic Effects of Acute Methamphetamine and Mephedrone Treatment on Dopamine Nerve Endings with the Use of 4-Methylmethamphetamine and Methcathinone. Journal of Pharmacology and Experimental Therapeutics. 2017. 360. 417-423.	1.3	18
58	Blue Light Photocatalytic Glycosylation without Electrophilic Additives. Organic Letters, 2017, 19, 2402-2405.	2.4	27
59	Synthesis of Trialkylhydroxylamines by Stepwise Reduction of <i>O</i> -Acyl <i>N</i> , <i>N</i> -Disubstituted Hydroxylamines: Substituent Effects on the Reduction of <i>O</i> -(1-Acyloxyalkyl)hydroxylamines and on the Conformational Dynamics of <i>N</i> -Alkoxypiperidines. Journal of Organic Chemistry. 2017. 82. 5345-5353.	1.7	9
60	Hydrogenolytic cleavage of naphthylmethyl ethers in the presence of sulfides. Carbohydrate Research, 2017, 449, 11-16.	1.1	7
61	Stereoselective Synthesis of the Equatorial Glycosides of Legionaminic Acid. Journal of Organic Chemistry, 2017, 82, 6142-6152.	1.7	18
62	Stereospecific synthesis of methyl 2-amino-2-deoxy-(6S)-deuterio-α,β-d-glucopyranoside and methyl 2,6-diamino-2,6-dideoxy-(6R)-deuterio-α,β-d-glucopyranoside: Side chain conformations of the 2-amino-2-deoxy and 2,6-diamino-2,6-dideoxyglucopyranosides. Carbohydrate Research, 2017, 448, 10-17.	1.1	11
63	N6′, N6′′′, and O4′ Modifications to Neomycin Affect Ribosomal Selectivity without Compromising Antibacterial Activity. ACS Infectious Diseases, 2017, 3, 368-377.	1.8	14
64	Trifluoromethanesulfonate Anion as Nucleophile in Organic Chemistry. Journal of Organic Chemistry, 2017, 82, 9263-9269.	1.7	54
65	Structure-Based Design and Synthesis of Apramycin–Paromomycin Analogues: Importance of the Configuration at the 6â€2-Position and Differences between the 6â€2-Amino and Hydroxy Series. Journal of the American Chemical Society, 2017, 139, 14611-14619.	6.6	31
66	Synthesis of N,N,O-Trisubstituted Hydroxylamines by Stepwise Reduction and Substitution of O-Acyl N,N-Disubstituted Hydroxylamines. Organic Letters, 2016, 18, 1820-1823.	2.4	17
67	Further studies on cation clock reactions in glycosylation: observation of a configuration specific intramolecular sulfenyl transfer and isolation and characterization of a tricyclic acetal. Carbohydrate Research, 2016, 427, 21-28.	1.1	10
68	Stereoselective Synthesis of 5- <i>epi</i> -α-Sialosides Related to the Pseudaminic Acid Glycosides. Reassessment of the Stereoselectivity of the 5-Azido-5-deacetamidosialyl Thioglycosides and Use of Triflate as Nucleophile in the Zbiral Deamination of Sialic Acids. Journal of Organic Chemistry, 2016, 81, 10617-10630.	1.7	35
69	Synthesis and intramolecular glycosylation of sialyl mono-esters of o-xylylene glycol. The importance of donor configuration and nitrogen protecting groups on cyclization yield and selectivity; isolation and characterization of a N-sialyl acetamide indicative of participation by acetonitrile. Carbohydrate Research. 2016. 435. 113-120.	1.1	8
70	Determination of the Influence of Sideâ€Chain Conformation on Glycosylation Selectivity using Conformationally Restricted Donors. Chemistry - A European Journal, 2016, 22, 4535-4542.	1.7	30
71	Glycosyl cations out on parole. Nature Chemistry, 2016, 8, 99-100.	6.6	15
72	Oxidative Deamination of <i>N</i> -Acetyl Neuraminic Acid: Substituent Effects and Mechanism. Journal of the American Chemical Society, 2016, 138, 1084-1092.	6.6	27

#	Article	IF	CITATIONS
73	Alternative synthesis and antibacterial evaluation of 1,5-dideoxy-1,5-imino-l-rhamnitol. Carbohydrate Research, 2016, 419, 29-32.	1.1	8
74	Influence of 4′- <i>O</i> -Glycoside Constitution and Configuration on Ribosomal Selectivity of Paromomycin. Journal of the American Chemical Society, 2015, 137, 7706-7717.	6.6	24
75	Absence of Stereodirecting Participation by 2- <i>O</i> -Alkoxycarbonylmethyl Ethers in 4,6- <i>O</i> -Benzylidene-Directed Mannosylation. Journal of Organic Chemistry, 2015, 80, 12300-12310.	1.7	14
76	Anomericity of T-2 Toxin-glucoside: Masked Mycotoxin in Cereal Crops. Journal of Agricultural and Food Chemistry, 2015, 63, 731-738.	2.4	68
77	Fluorine-Decoupled Carbon Spectroscopy for the Determination of Configuration at Fully Substituted, Trifluoromethyl- and Perfluoroalkyl-Bearing Carbons: Comparison with ¹⁹ F– ¹ H Heteronuclear Overhauser Effect Spectroscopy. Journal of Organic Chemistry. 2015. 80. 1754-1763.	1.7	10
78	Selective Protection of Secondary Amines as theN-Phenyltriazenes. Application to Aminoglycoside Antibiotics. Organic Letters, 2015, 17, 4006-4009.	2.4	10
79	Cation Clock Reactions for the Determination of Relative Reaction Kinetics in Glycosylation Reactions: Applications to Gluco- and Mannopyranosyl Sulfoxide and Trichloroacetimidate Type Donors. Journal of the American Chemical Society, 2015, 137, 10336-10345.	6.6	57
80	Facile Synthesis of 3- <i>N</i> -Alkyl Pyrimidin-2,4-diones from <i>N</i> -Sulfonyloxy Maleimides and Amines. Organic Letters, 2015, 17, 4122-4124.	2.4	12
81	Synthesis and Antiribosomal Activities of 4â€2- <i>O</i> , 6â€2- <i>O</i> , 4â€3- <i>O</i> , 4â€3- <i>O</i> , 4â€3- <i>O</i> , 4â€3,6â€3- <i>O</i> , -, 4â€2,6â€2- <i>O</i> , and 4â€3,6â€3- <i>O</i> , -, 4â€3,6â€3- <i>O</i> , -, 4â€2,6â€2- <i>O</i> , -, 4â€3,6â€3- <i>O</i> , -, 4â€3,6â€3- <i>O</i> , -, 4â€2,6â€2- <i>O</i> , -, 4â€3,6â€3- <i>O</i> , -, 4â€2,6â€2- <i>O</i> , -, 4â€2,6â€2- <i>O</i> , -, 4â€3,6â€3- <i>O</i> , -, 4â€3,6â€3- <i>O</i> , -, 4â€3,6â€3- <i>O</i> , -, 4â€3,6â€3- <i>O</i> , -, 4â€2,6â€2- <i>O</i> , -, 4â€3,6â€3- <i>O</i> , -, 4a€3,6â€3- <i>O</i> , -, 4a€3,6â€3-, -, 4a€3,6â€3- <i>O</i> , -,	d 1.8	14
82	The Isothiocyanato Moiety: An Ideal Protecting Group for the Stereoselective Synthesis of Sialic Acid Glycosides and Subsequent Diversification. Angewandte Chemie - International Edition, 2015, 54, 1275-1278.	7.2	33
83	A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art. Carbohydrate Research, 2015, 403, 48-59.	1.1	126
84	Identification and Evaluation of Improved 4â€2- <i>O</i> -(Alkyl) 4,5-Disubstituted 2-Deoxystreptamines as Next-Generation Aminoglycoside Antibiotics. MBio, 2014, 5, e01827-14.	1.8	37
85	Chemistry of the β-Thiolactones: Substituent and Solvent Effects on Thermal Decomposition and Comparison with the β-Lactones Journal of Organic Chemistry, 2014, 79, 4068-4077.	1.7	12
86	Synthesis, antiribosomal and antibacterial activity of 4′- <i>O</i> -glycopyranosyl paromomycin aminoglycoside antibiotics. MedChemComm, 2014, 5, 1179-1187.	3.5	9
87	Biosynthesis of 4-aminoheptose 2-epimers, core structural components of the septacidins and spicamycins. Journal of Antibiotics, 2014, 67, 405-414.	1.0	12
88	Importance of the 6′â€Hydroxy Group and Its Configuration for Apramycin Activity. ChemMedChem, 2014, 9, 2074-2083.	1.6	22
89	Synthesis and Evaluation of Di- and Trimeric Hydroxylamine-Based β-(1→3)-Glucan Mimetics. Journal of the American Chemical Society, 2014, 136, 14852-14857.	6.6	30
90	Probing the Influence of Protecting Groups on the Anomeric Equilibrium in Sialic Acid Glycosides with the Persistent Radical Effect. Journal of the American Chemical Society, 2014, 136, 5472-5480.	6.6	32

#	Article	IF	CITATIONS
91	Alternative Synthesis of P-Chiral Phosphonite-Borane Complexes: Application to the Synthesis of Phostone Dimers. Journal of Organic Chemistry, 2013, 78, 6858-6867.	1.7	17
92	Probing the Influence of a 4,6- <i>O</i> -Acetal on the Reactivity of Galactopyranosyl Donors: Verification of the Disarming Influence of the <i>trans–gauche</i> Conformation of C5–C6 Bonds. Journal of the American Chemical Society, 2013, 135, 14249-14255.	6.6	73
93	NO Bond as a Glycosidicâ€Bond Surrogate: Synthetic Studies Toward Polyhydroxylated <i>N</i> â€Alkoxypiperidines. Chemistry - A European Journal, 2013, 19, 2168-2179.	1.7	29
94	Exploration of the Oxazolidinthione Protecting System for the Synthesis of Sialic Acid Glycosides. Journal of Carbohydrate Chemistry, 2013, 32, 324-335.	0.4	11
95	Chemical Diversification of Sialic Acid Glycosides by Stereospecific, Chemoselective Deamination. Angewandte Chemie - International Edition, 2013, 52, 11339-11342.	7.2	16
96	The chemistry and biology of β-thiolactones. Journal of Sulfur Chemistry, 2013, 34, 104-141.	1.0	6
97	Synthesis and evaluation of 3-deoxy and 3-deoxy-3-fluoro derivatives of gluco- and manno-configured tetrahydropyridoimidazole glycosidase inhibitors. Carbohydrate Research, 2013, 377, 35-43.	1.1	14
98	Exploration of an imide capture/N,N-acyl shift sequence for asparagine native peptide bond formation. Bioorganic and Medicinal Chemistry, 2013, 21, 3479-3485.	1.4	17
99	Improved methods for the stereoselective synthesis ofÂmannoheptosyl donors and their glycosides: toward the synthesis of the trisaccharide repeating unit of the Campylobacter jejuni RM1221 capsular polysaccharide. Tetrahedron, 2013, 69, 5501-5510.	1.0	18
100	<i>Se</i> -(9-Fluorenylmethyl) Selenoesters; Preparation, Reactivity, and Use as Convenient Synthons for Selenoacids. Organic Letters, 2013, 15, 3758-3761.	2.4	10
101	Influence of Side Chain Conformation and Configuration on Glycosyl Donor Reactivity and Selectivity as Illustrated by Sialic Acid Donors Epimeric at the 7-Position. Journal of the American Chemical Society, 2013, 135, 18999-19007.	6.6	55
102	Synthesis of β-Hydroxy O-Alkyl Hydroxylamines from Epoxides Using a Convenient and Versatile Two-Step Procedure. Synthesis, 2012, 45, 65-74.	1.2	2
103	Comparison of the reactivity of β-thiolactones and β-lactones toward ring-opening by thiols and amines. Organic and Biomolecular Chemistry, 2012, 10, 6480-6483.	1.5	11
104	Synthesis and biological investigation of the β-thiolactone and β-lactam analogs of tetrahydrolipstatin. Organic and Biomolecular Chemistry, 2012, 10, 2629.	1.5	24
105	Stereoselective, Electrophilic α-C-Sialidation. Organic Letters, 2012, 14, 1342-1345.	2.4	29
106	2-(Selenocyanatomethyl)-2-propenol— A convenient synthon for ligation via the deselenative allylic rearrangement of allyl selenosulfides: preparation, functional group compatibility, and application. Canadian Journal of Chemistry, 2012, 90, 944-953.	0.6	6
107	Cation Clock Permits Distinction Between the Mechanisms of α- and β-O- and β-C-Glycosylation in the Mannopyranose Series: Evidence for the Existence of a Mannopyranosyl Oxocarbenium Ion. Journal of the American Chemical Society, 2012, 134, 14746-14749.	6.6	96
108	Stereoselective <i>C</i> -Glycoside Formation with 2- <i>O</i> -Benzyl-4,6- <i>O</i> -benzylidene Protected 3-Deoxy Gluco- and Mannopyranoside Donors: Comparison with <i>O</i> -Glycoside Formation. Journal of Organic Chemistry, 2012, 77, 8905-8912.	1.7	30

#	Article	IF	CITATIONS
109	Influence of protecting groups on the anomeric equilibrium; case of the 4,6-O-benzylidene acetal in the mannopyranose series. Carbohydrate Research, 2012, 357, 126-131.	1.1	14
110	Dissecting the Influence of Oxazolidinones and Cyclic Carbonates in Sialic Acid Chemistry. Angewandte Chemie - International Edition, 2012, 51, 11105-11109.	7.2	63
111	Asymmetric Synthesis of Polyhydroxylated N-Alkoxypiperidines by Ring-Closing Double Reductive Amination: Facile Preparation of Isofagomine and Analogues. Organic Letters, 2012, 14, 596-599.	2.4	37
112	Synthesis, Characterization, and Coupling Reactions of Six-Membered Cyclic P-Chiral Ammonium Phosphonite–Boranes; ReactiveH-Phosphinate Equivalents for the Stereoselective Synthesis of Glycomimetics. Journal of the American Chemical Society, 2012, 134, 12289-12301.	6.6	35
113	Dissecting the mechanisms of a class of chemical glycosylation using primary 13C kinetic isotope effects. Nature Chemistry, 2012, 4, 663-667.	6.6	180
114	Highly Stereoselective Synthesis of Primary, Secondary, and Tertiary α-S-Sialosides under Lewis Acidic Conditions. Organic Letters, 2012, 14, 4138-4141.	2.4	33
115	Synthesis and Structural Verification of the Xylomannan Antifreeze Substance from the Freeze-Tolerant Alaskan Beetle Upis ceramboides. Journal of Organic Chemistry, 2011, 76, 8611-8620.	1.7	17
116	Methodology Development and Physical Organic Chemistry: A Powerful Combination for the Advancement of Glycochemistry. Journal of Organic Chemistry, 2011, 76, 9193-9209.	1.7	114
117	Practical Synthesis of 2-Keto-3-deoxy- <scp>d</scp> -glycero- <scp>d</scp> -galactononulosonic Acid (KDN). Organic Letters, 2011, 13, 6288-6291.	2.4	14
118	Photoinitiated Glycosylation at 350 nm. Journal of Carbohydrate Chemistry, 2011, 30, 469-485.	0.4	35
119	Direct Fmoc-Chemistry-Based Solid-Phase Synthesis of Peptidyl Thioesters. Journal of Organic Chemistry, 2011, 76, 6518-6524.	1.7	27
120	Protecting Group-Free Glycoligation by the Desulfurative Rearrangement of Allylic Disulfides as a Means of Assembly of Oligosaccharide Mimetics. Journal of Organic Chemistry, 2011, 76, 3691-3709.	1.7	13
121	Facile Amide Bond Formation from Carboxylic Acids and Isocyanates. Organic Letters, 2011, 13, 2256-2259.	2.4	97
122	Exploring the potential of the β-thiolactones in bioorganic chemistry. Organic and Biomolecular Chemistry, 2011, 9, 7134.	1.5	18
123	Synthesis of the ?-Rhamnopyranosides and the 6-Deoxy-?-mannoheptopyranosides. Chimia, 2011, 65, 59.	0.3	11
124	Concise Construction of Sarain A Core According to a Biosynthetic Proposal: Cyclization through an Intramolecular Mannichâ€ŧype Reaction Involving an Endocyclic <i>N</i> â€Acyliminium ion. Chemistry - A European Journal, 2011, 17, 9907-9910.	1.7	14
125	A propos of glycosyl cations and the mechanism of chemical glycosylation. Comptes Rendus Chimie, 2011, 14, 3-16.	0.2	109
126	Chemistry with and Around Thioacids. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1005-1018.	0.8	11

8

#	Article	IF	CITATIONS
127	Mechanism of a Chemical Glycosylation Reaction. Accounts of Chemical Research, 2010, 43, 1144-1153.	7.6	436
128	Dihydro-3-(triphenylphosphoranylidene)-2,5-thiophendione: a convenient synthon for the preparation of substituted 1,4-thiazepin-5-ones and piperidinones via the intermediacy of thioacids. Tetrahedron, 2010, 66, 6383-6390.	1.0	12
129	Stereoselective Synthesis of αâ€Ketoâ€deoxyâ€ <scp>D</scp> â€ <i>glycero</i> â€ <scp>D</scp> â€ <i>galactoâ€</i> nonulosonic Acid Glycosid Means of the 4,5â€ <i>O</i> â€Carbonate Protecting Group. Angewandte Chemie - International Edition, 2010, 49. 3049-3052.	es by 7.2	39
130	Double Diastereoselection, Regioselectivity, and the Importance of Donor-Acceptor Complementarity in the Stereoselectivity of Glycosylation Reactions. Trends in Glycoscience and Glycotechnology, 2010, 22, 1-15.	0.0	38
131	Influence of the O3 Protecting Group on Stereoselectivity in the Preparation of <i>C</i> -Mannopyranosides with 4,6- <i>O</i> -Benzylidene Protected Donors. Journal of Organic Chemistry, 2010, 75, 8383-8391.	1.7	36
132	One-Pot Formation of Piperidine- and Pyrrolidine-Substituted Pyridinium Salts via Addition of 5-Alkylaminopenta-2,4-dienals to <i>N</i> -Acyliminium Ions: Application to the Synthesis of (±)-Nicotine and Analogs. Organic Letters, 2010, 12, 4760-4763.	2.4	37
133	Synthesis of <i>N</i> -Acyl-5-aminopenta-2,4-dienals via Base-Induced Ring-Opening of <i>N</i> -Acylated Furfurylamines: Scope and Limitations. Journal of Organic Chemistry, 2010, 75, 4311-4314.	1.7	22
134	Cyclic Peptide Synthesis with Thioacids. Organic Letters, 2010, 12, 3254-3257.	2.4	24
135	Influence of Protecting Groups on the Reactivity and Selectivity of Glycosylation: Chemistry of the 4,6-O-Benzylidene Protected Mannopyranosyl Donors and Related Species. Topics in Current Chemistry, 2010, 301, 141-188.	4.0	67
136	Chapter 6 Stereocontrolled Synthesis of Mannans and Rhamnans. Advances in Carbohydrate Chemistry and Biochemistry, 2009, 62, 251-309.	0.4	25
137	Epimerizationâ€Free Block Synthesis of Peptides from Thioacids and Amines with the Sanger and Mukaiyama Reagents. Angewandte Chemie - International Edition, 2009, 48, 2355-2358.	7.2	87
138	Triblock Peptide and Peptide Thioester Synthesis With Reactivityâ€Differentiated Sulfonamides and Peptidyl Thioacids. Angewandte Chemie - International Edition, 2009, 48, 7591-7594.	7.2	46
139	Phenylthiomethyl Glycosides: Convenient Synthons for the Formation of Azidomethyl and Glycosylmethyl Glycosides and Their Derivatives. Angewandte Chemie - International Edition, 2009, 48, 8896-8899 Dimethylthexylsilyl 2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)-β-d-glucopyranoside,	7.2	33
140	dimethylthexylsilyl 3,4,6-tri-O-benzyl-Î ² -d-mannopyranosyl-(1â†'4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxybenzyl)-Î ² -d-glucopyra and dimethylthexylsilyl 2-O-(benzylsulfonyl)-3,4,6-tri-O-benzyl-Î ² -d-mannopyranosyl-(1â†'4)-2-acetamido-3-O-allyl-2-deoxy-6-O-(4-methoxyl	1.1	4 -d-glucopyra
141	synthesis of airthentic samples. Carbohydrate Research, 2009, 344, 140-144. Stereocontrolled Synthesis of <scp>d</scp> -and <scp>l</scp> -i ² -Rhamnopyranosides with 4- <i>O</i> >Ci>C>i>-f=Cyanobenzylidene-Protected 6-Thiorhamnopyranosyl Thioglycosides. Journal of Organic Chemistry, 2009, 74, 773-781.	1.7	43
142	One-Pot Syntheses of Dissymmetric Diamides Based on the Chemistry of Cyclic Monothioanhydrides. Scope and Limitations and Application to the Synthesis of Glycodipeptides. Journal of Organic Chemistry, 2009, 74, 3886-3893.	1.7	26
143	Solid-Phase Synthesis of Peptidyl Thioacids Employing a 9-Fluorenylmethyl Thioester-Based Linker in Conjunction with Boc Chemistry. Journal of Organic Chemistry, 2009, 74, 7383-7388.	1.7	19
144	Highly Stereoselective Synthesis of α- <scp>d</scp> -Mannopyranosyl Phosphosugars. Journal of Organic Chemistry, 2009, 74, 9576-9579.	1.7	13

#	Article	IF	CITATIONS
145	Silver-Mediated Allylic Disulfide Rearrangement for Conjugation of Thiols in Protic Media. Journal of Organic Chemistry, 2009, 74, 9422-9427.	1.7	16
146	Reaction of Thioacids with Isocyanates and Isothiocyanates: A Convenient Amide Ligation Process. Organic Letters, 2009, 11, 3514-3517.	2.4	90
147	S _N 2-Type Nucleophilic Opening of β-Thiolactones (Thietan-2-ones) as a Source of Thioacids for Coupling Reactions. Journal of Organic Chemistry, 2009, 74, 3389-3393.	1.7	18
148	Thiomaleic Anhydride: A Convenient Building Block for the Synthesis of α-Substituted γ- and δ-Lactones through Free-Radical Addition, Nucleophilic Ring Opening, and Subsequent Thiocarboxylate Manipulation. Journal of Organic Chemistry, 2009, 74, 6792-6796.	1.7	16
149	The 4-(<i>tert</i> -Butyldiphenylsiloxy)-3-fluorobenzyl Group: A New Alcohol Protecting Group, Fully Orthogonal with the <i>p</i> -Methoxybenzyl Group and Removable under Desilylation Conditions. Journal of Organic Chemistry, 2009, 74, 2486-2493.	1.7	13
150	A stable, commercially available sulfenyl chloride for the activation of thioglycosides in conjunction with silver trifluoromethanesulfonate. Carbohydrate Research, 2008, 343, 1858-1862.	1.1	51
151	Imposing the trans/gauche conformation on a sialic acid donor with a 5-N,7-O-oxazinanone group: effect on glycosylation stereoselectivity. Tetrahedron, 2008, 64, 2042-2047.	1.0	31
152	Intramolecular homolytic aromatic substitution of alkyl 2-benzimidazolyl sulfones as a means of entry into alkyl radicals for organic synthesis. Tetrahedron Letters, 2008, 49, 2999-3003.	0.7	3
153	Stereoselective Iterative One-Pot Synthesis of <i>N</i> -Glycolylneuraminic Acid-Containing Oligosaccharides. Organic Letters, 2008, 10, 4033-4035.	2.4	70
154	Block Synthesis of Tetra- and Hexasaccharides (β- <scp>d</scp> -Glycero- <scp>d</scp> -manno-Hep <i>p</i> -(1â†'4)-[α- <scp>l</scp> -Rha <i>p</i> -(1â†'3)-β- <sc< td=""><td>:p>d1.7</td><td>>-glycero-<scp< td=""></scp<></td></sc<>	:p>d1.7	>-glycero- <scp< td=""></scp<>
155	Glycoprotein from Bacillus thermoaerophilus. Journal of Organic Chemistry, 2008, 73, 7003-7010. Is Donorâ [^] Acceptor Hydrogen Bonding Necessary for 4,6- <i>O</i> Benzylidene-directed Î ² -Mannopyranosylation? Stereoselective Synthesis of Î ² - <i>C</i> Mannopyranosides and α- <i>C</i> Glucopyranosides. Organic Letters, 2008, 10, 4731-4734.	2.4	45
156	Application of the 4-Trifluoromethylbenzenepropargyl Ether Group as an Unhindered, Electron Deficient Protecting Group for Stereoselective Glycosylation. Journal of Organic Chemistry, 2008, 73, 5173-5176.	1.7	26
157	Does Neighboring Group Participation by Non-Vicinal Esters Play a Role in Glycosylation Reactions? Effective Probes for the Detection of Bridging Intermediates. Journal of Organic Chemistry, 2008, 73, 8942-8953.	1.7	124
158	Synthesis of Neoglycoconjugates by the Desulfurative Rearrangement of Allylic Disulfides. Journal of Organic Chemistry, 2008, 73, 7017-7027.	1.7	18
159	Amino Acid and Peptide Synthesis and Functionalization by the Reaction of Thioacids with 2,4-Dinitrobenzenesulfonamides. Organic Letters, 2007, 9, 4423-4426.	2.4	88
160	Revisiting the Armedâ^'Disarmed Concept:  The Importance of Anomeric Configuration in the Activation of S-Benzoxazolyl Glycosides. Organic Letters, 2007, 9, 4115-4118.	2.4	60
161	Dechalcogenative Allylic Selenosulfide and Disulfide Rearrangements:  Complementary Methods for the Formation of Allylic Sulfides in the Absence of Electrophiles. Scope, Limitations, and Application to the Functionalization of Unprotected Peptides in Aqueous Media. Journal of the American Chemical Society. 2007. 129. 10282-10294.	6.6	55
162	Cyclic Thioanhydrides:  Linchpins for Multicomponent Coupling Reactions Based on the Reaction of Thioacids with Electron-Deficient Sulfonamides and Azides. Organic Letters, 2007, 9, 5323-5325.	2.4	35

#	Article	IF	CITATIONS
163	α-Selective Sialylations at â^'78 °C in Nitrile Solvents with a 1-Adamantanyl Thiosialoside. Journal of Organic Chemistry, 2007, 72, 7794-7797.	1.7	130
164	Convergent Synthesis of a β-(1→3)-Mannohexaose. Journal of Organic Chemistry, 2007, 72, 6806-6815.	1.7	36
165	Synthesis of the Antigenic Tetrasaccharide Side Chain from the Major Glycoprotein ofBacillusanthracisExosporium. Journal of Organic Chemistry, 2007, 72, 6513-6520.	1.7	50
166	Electrochemical Generation of Glycosyl Triflate Pools. Journal of the American Chemical Society, 2007, 129, 10922-10928.	6.6	116
167	On the Use of 3,5-O-Benzylidene and 3,5-O-(Di-tert-butylsilylene)-2-O-benzylarabinothiofuranosides and Their Sulfoxides as Glycosyl Donors for the Synthesis of β-Arabinofuranosides: Importance of the Activation Method. Journal of Organic Chemistry, 2007, 72, 1553-1565.	1.7	112
168	Synthesis and Glycosylation of a Series of 6-Mono-, Di-, and Trifluoro <i>S</i> -Phenyl 2,3,4-Tri- <i>O</i> -benzyl-thiorhamnopyranosides. Effect of the Fluorine Substituents on Glycosylation Stereoselectivity. Journal of the American Chemical Society, 2007, 129, 11756-11765.	6.6	53
169	Heterobivalent Library Expansion by "Living Radical―Processes: Thiocarbonyl Addition/Elimination, and Nitroxide-Based Reactions with Fluorous Deconvolution. Journal of the American Chemical Society, 2007, 129, 12106-12107.	6.6	14
170	Catalysis of Stannane-Mediated Radical Chain Reactions by Benzeneselenol. Accounts of Chemical Research, 2007, 40, 453-463.	7.6	51
171	Facile Oxidative Cleavage of 4-O-Benzyl Ethers with Dichlorodicyanoquinone in Rhamno- and Mannopyranosides. Journal of Organic Chemistry, 2007, 72, 3581-3584.	1.7	29
172	4,6-O-Benzylidene-Directed β-Mannopyranosylation and α-Glucopyranosylation: The 2-Deoxy-2-fluoro and 3-Deoxy-3-fluoro Series of Donors and the Importance of the O2â^'C2â^'C3â^'O3 Interaction. Journal of Organic Chemistry, 2007, 72, 1681-1690.	1.7	59
173	Direct Stereocontrolled Synthesis of 3-Amino-3-deoxy-β-Mannopyranosides:  Importance of the Nitrogen Protecting Group on Stereoselectivity. Journal of Organic Chemistry, 2007, 72, 5183-5192.	1.7	22
174	Stereocontrolled Glycoside and Glycosyl Ester Synthesis. Neighboring Group Participation and Hydrogenolysis of 3-(2â€~-Benzyloxyphenyl)-3,3-dimethylpropanoates. Organic Letters, 2007, 9, 1613-1615.	2.4	31
175	Chemistry of the Hexahydropyrrolo[2,3-b]indoles:  Configuration, Conformation, Reactivity, and Applications in Synthesis. Accounts of Chemical Research, 2007, 40, 151-161.	7.6	374
176	O-Sialylation withN-Acetyl-5-N,4-O-Carbonyl-Protected Thiosialoside Donors in Dichloromethane:Â Facile and Selective Cleavage of the Oxazolidinone Ring. Journal of Organic Chemistry, 2007, 72, 2387-2391.	1.7	155
177	β-Selective glucosylation in the absence of neighboring group participation: influence of the 3,4-O-bisacetal protecting system. Tetrahedron, 2007, 63, 5042-5049.	1.0	16
178	CD1c Presentation of Synthetic Glycolipid Antigens with Foreign Alkyl Branching Motifs. Chemistry and Biology, 2007, 14, 1232-1242.	6.2	62
179	Stereocontrolled Glycosylation: Recent Advances: β-D-Rhamnosides and β-D-Mannans. ACS Symposium Series, 2007, , 60-72.	0.5	10
180	Native Chemical Ligation at Phenylalanine. Journal of the American Chemical Society, 2007, 129, 10064-10065.	6.6	275

#	Article	IF	CITATIONS
181	Sigmatropic Rearrangements as Tools for Amino Acid and Peptide Modification:  Application of the Allylic Sulfur Ylide Rearrangement to the Preparation of Neoglycoconjugates and Other Conjugates. Journal of Organic Chemistry, 2006, 71, 9172-9177.	1.7	37
182	Allylic Disulfide Rearrangement and Desulfurization:  Mild, Electrophile-Free Thioether Formation from Thiols. Organic Letters, 2006, 8, 3593-3596.	2.4	32
183	Expedient Synthesis ofthreo-β-Hydroxy-α-amino Acid Derivatives: Phenylalanine, Tyrosine, Histidine, and Tryptophan. Journal of Organic Chemistry, 2006, 71, 7106-7109.	1.7	54
184	1-Naphthylpropargyl Ether Group:  A Readily Cleaved and Sterically Minimal Protecting System for Stereoselective Glycosylation. Organic Letters, 2006, 8, 4879-4882.	2.4	45
185	Stereocontrolled Synthesis of thed- and glycero-12-d-manno-Heptopyranosides and Their 6-Deoxy Analogues. Synthesis of Methyl α-l-Rhamno-pyranosyl-(1â†'3)-d-glycero-Î2-d-manno-heptopyranosyl- (1â†'3)-6-deoxy-glycero-Î2-d-manno-heptopyranosyl-(1â†'4)-α-l-rhamno-pyranoside, a Tetrasaccharide Subunit of the Lipopolysaccharide fromPlesimonas shigelloides. Journal of the American Chemical Society, 2006,	6.6	70
186	Allylic Selenosulfide Rearrangement:Â A Method for Chemical Ligation to Cysteine and Other Thiols. Journal of the American Chemical Society, 2006, 128, 2544-2545.	6.6	53
187	On the Influence of the C2â^'O2 and C3â^'O3 Bonds in 4,6-O-Benzylidene-Directed β-Mannopyranosylation and α-Glucopyranosylation. Journal of Organic Chemistry, 2006, 71, 8473-8480.	1.7	83
188	4,6-O-[1-Cyano-2-(2-iodophenyl)ethylidene] Acetals. Improved Second-Generation Acetals for the Stereoselective Formation of Î ² -d-Mannopyranosides and Regioselective Reductive Radical Fragmentation to Î ² -d-Rhamnopyranosides. Scope and Limitations. Journal of Organic Chemistry, 2006, 71, 3452-3463.	1.7	57
189	Total Synthesis and Structural Verification of Some Novel Branched Alkanes with Quaternary Carbons Isolated from Diverse Geological Sources. Journal of Organic Chemistry, 2006, 71, 5016-5019.	1.7	11
190	Efficient Glycosidation of a Phenyl Thiosialoside Donor with Diphenyl Sulfoxide and Triflic Anhydride in Dichloromethane. Organic Letters, 2006, 8, 959-962.	2.4	83
191	Expedient Two-Step Synthesis of Phenolic Cyclitols from Benzene. Journal of Organic Chemistry, 2006, 71, 4521-4524.	1.7	12
192	Enhanced Diastereoselectivity in β-Mannopyranosylation through the Use of Sterically Minimal Propargyl Ether Protecting Groups. Journal of Organic Chemistry, 2006, 71, 3064-3070.	1.7	77
193	Synthesis of a β-(1→3)-d-Rhamnotetraose by a One-Pot, Multiple Radical Fragmentation. Organic Letters, 2006, 8, 4327-4330.	2.4	37
194	On the regioselectivity of the Hanessian–Hullar reaction in 4,6-O-benzylidene protected galactopyranosides. Carbohydrate Research, 2006, 341, 1748-1752.	1.1	19
195	On the nitrile effect in l-rhamnopyranosylation. Carbohydrate Research, 2006, 341, 1467-1475.	1.1	42
196	Enantioselective alkene radical cations reactions. Tetrahedron, 2006, 62, 6501-6518.	1.0	33
197	Radical dearomatization of benzene leading to phenanthridine and phenanthridinone derivatives related to (±)-pancratistatin. Tetrahedron, 2006, 62, 6830-6840.	1.0	35
198	Radical dearomatization of arenes and heteroarenes. Tetrahedron, 2006, 62, 7824-7837.	1.0	41

#	Article	IF	CITATIONS
199	Homolytic Substitution at the Sulfur Atom as a Tool for Organic Synthesis. Helvetica Chimica Acta, 2006, 89, 2167-2182.	1.0	36
200	Disarming, non-participating 2-O-protecting groups in manno- and rhamnopyranosylation: scope and limitations of sulfonates, vinylogous esters, phosphates, cyanates, and nitrates. Tetrahedron: Asymmetry, 2005, 16, 105-119.	1.8	67
201	Stereochemical Memory Effects in Alkene Radical Cation/Anion Contact Ion Pairs:  Effect of Substituents, and Models for Diastereoselectivity. Journal of the American Chemical Society, 2005, 127, 9924-9929.	6.6	26
202	ls There a Homolytic Substitution Chemistry (SH2) of Sulfones?. Journal of Organic Chemistry, 2005, 70, 7672-7678.	1.7	26
203	Facile Dearomatizing Radical Arylation of Furan and Thiophene. Organic Letters, 2005, 7, 3625-3628.	2.4	29
204	2-O-Propargyl Ethers:  Readily Cleavable, Minimally Intrusive Protecting Groups for β-Mannosyl Donors. Organic Letters, 2005, 7, 2277-2280.	2.4	62
205	Synthesis and Stereoselective Glycosylation ofd- andl-glycero-β-d-manno-Heptopyranoses. Organic Letters, 2005, 7, 1395-1398.	2.4	39
206	Catalytic Oxidation Adjacent to Carbonyl Groups and at Benzylic Positions with a Fluorous Seleninic Acid in the Presence of Iodoxybenzene. Journal of Organic Chemistry, 2005, 70, 3309-3311.	1.7	47
207	Synthesis of a 4,6-Disubstituted Dibenzofuran \hat{l}^2 -Sheet Initiator by Reductive Radical Arylation of Benzene. Journal of Organic Chemistry, 2005, 70, 2384-2386.	1.7	26
208	Structure and distribution of branched aliphatic alkanes with quaternary carbon atoms in Cenomanian and Turonian black shales of Pasquia Hills (Saskatchewan, Canada). Organic Geochemistry, 2005, 36, 117-138.	0.9	51
209	Improved Synthesis of 1â€Benzenesulfinyl Piperidine and Analogs for the Activation of Thioglycosides in Conjunction with Trifluoromethanesulfonic Anhydride*. Journal of Carbohydrate Chemistry, 2005, 24, 415-424.	0.4	29
210	Stereocontrolled Formation of β-Glucosides and Related Linkages in the Absence of Neighboring Group Participation:Â Influence of atrans-Fused 2,3-O-Carbonate Group. Journal of Organic Chemistry, 2005, 70, 7252-7259.	1.7	51
211	6-O-Benzyl- and 6-O-Silyl-N-acetyl-2-amino-2-N,3-O-carbonyl-2-deoxyglucosides:Â Effective Glycosyl Acceptors in the Glucosamine 4-OH Series. Effect of Anomeric Stereochemistry on the Removal of the Oxazolidinone Group. Journal of Organic Chemistry, 2005, 70, 1291-1296.	1.7	81
212	Approximate OH5 ring conformation of 2,3-O-carbonate protected α- and ß-L-rhamnopyranosides as confirmed by X-ray crystallography. Arkivoc, 2005, 2005, 339-344.	0.3	12
213	Approximate H(5) Ring Conformation of 2,3-O-Carbonate Protected α- and β-L-Rhamnopyranosides as Confirmed by X-Ray Crystallography. Arkivoc, 2005, 2005, 339-344.	0.3	8
214	Mechanism of 4,6-O-Benzylidene-Directedβ-Mannosylation as Determined byα-Deuterium Kinetic Isotope Effects. Angewandte Chemie - International Edition, 2004, 43, 5386-5389.	7.2	194
215	Design, synthesis, and evaluation of oxyanion-hole selective inhibitor substituents for the S1 subsite of factor Xa. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5165-5170.	1.0	8
216	Synthesis of carbazomycin B by radical arylation of benzene. Tetrahedron, 2004, 60, 1513-1516.	1.0	55

#	ARTICLE	IF	CITATIONS
217	Benzylidene Acetal Fragmentation Route to 6-Deoxy Sugars:a€‰ Direct Reductive Cleavage in the Presence of Ether Protecting Groups, Permitting the Efficient, Highly Stereocontrolled Synthesis of β-d-Rhamnosides from d-Mannosyl Glycosyl Donors. Total Synthesis of α-d-Gal-(1→3)-α-d-Rha-(1→3)- β-d-Rha-(1→4)-β-d-Glu-OMe, the Repeating Unit of the Antigenic Lipopolysaccharide from Escherichia	6.6	109
218	The β-(acyloxy)alkyl radical rearrangement revisited. Canadian Journal of Chemistry, 2004, 82, 75-79.	0.6	10
219	Direct Chemical Synthesis of the β-Mannans: Linear and Block Syntheses of the Alternating β-(1→3)-β-(1→4)-Mannan Common toRhodotorulaglutinis,Rhodotorulamucilaginosa, andLeptospirabiflexa. Journal of the American Chemical Society, 2004, 126, 15081-15086.	6.6	98
220	Endo-Selective Quenching of Hexahydropyrrolo[2,3-b]indole-Based N-Acyliminium Ions. Journal of Organic Chemistry, 2004, 69, 3976-3978.	1.7	8
221	Catalytic Allylic Oxidation with a Recyclable, Fluorous Seleninic Acid. Organic Letters, 2004, 6, 775-777.	2.4	62
222	Direct Chemical Synthesis of the β-d-Mannans: The β-(1→2) and β-(1→4) Series. Journal of the American Chemical Society, 2004, 126, 14930-14934.	6.6	84
223	The Intramolecular Asymmetric Pausonâ [~] Khand Cyclization as a Novel and General Stereoselective Route to Benzindene Prostacyclins:Â Synthesis of UT-15 (Treprostinil). Journal of Organic Chemistry, 2004, 69, 1890-1902.	1.7	32
224	Cyclofunctionalization of Unsaturated Alcohols, Phenols, Acids, and Sulfonamides with 1-Benzenesulfinyl Piperidine and Trifluoromethanesulfonic Anhydride. Heterocycles, 2004, 62, 827.	0.4	5
225	Direct Synthesis of Heterobiaryls by Radical Addition to Pyridine: Expeditious Synthesis of Chelating Ligands. Heterocycles, 2004, 64, 499.	0.4	13
226	A short synthesis of the trisaccharide building block of the N-linked glycans. Tetrahedron Letters, 2003, 44, 1787-1789.	0.7	46
227	Highly diastereoselective radical cyclization of a glucose-derived enol ether radical cation/phosphate anion pair. Tetrahedron: Asymmetry, 2003, 14, 2861-2864.	1.8	18
228	Design and synthesis of highly constrained factor Xa inhibitors: amidine-Substituted bis(benzoyl)-[and]-diazepan-2-ones and bis(benzylidene)-bis(gem-dimethyl)cycloketones. Bioorganic and Medicinal Chemistry, 2003, 11, 3379-3392.	1.4	14
229	The 4,6-O-[α-(2-(2- Iodophenyl)ethylthiocarbonyl)benzylidene] Protecting Group:  Stereoselective Glycosylation, Reductive Radical Fragmentation, and Synthesis of β-d-Rhamnopyranosides and Other Deoxy Sugars. Organic Letters, 2003, 5, 2189-2191.	2.4	39
230	Direct Synthesis of the \hat{I}^2 -l-Rhamnopyranosides. Organic Letters, 2003, 5, 781-784.	2.4	78
231	The 3,4-O-Carbonate Protecting Group as a β-Directing Group in Rhamnopyranosylation in Both Homogeneous and Heterogeneous Glycosylations As Compared to the Chameleon-like 2,3-O-Carbonates. Journal of Organic Chemistry, 2003, 68, 8453-8458.	1.7	69
232	Asymmetric Synthesis of Highly Substituted β-Nitro Alcohols and Enantiomerically Enriched 4,4,5-Trisubstituted Oxazolidinones. Journal of Organic Chemistry, 2003, 68, 2034-2037.	1.7	24
233	Influence of the 4,6-O-Benzylidene, 4,6-O-Phenylboronate, and 4,6-O-Polystyrylboronate Protecting Groups on the Stereochemical Outcome of Thioglycoside-Based Glycosylations Mediated by 1-Benzenesulfinyl Piperidine/Triflic Anhydride andN-Iodosuccinimide/Trimethylsilyl Triflate. Journal of Organic Chemistry. 2003. 68. 8142-8148.	1.7	77
234	Tandem Polar/Radical Crossover Sequences for the Formation of Fused and Bridged Bicyclic Nitrogen Heterocycles Involving Radical Ionic Chain Reactions, and Alkene Radical Cation Intermediates, Performed under Reducing Conditions:Â Scope and Limitations. Journal of the American Chemical Society, 2003, 125, 7942-7947.	6.6	49

#	Article	IF	CITATIONS
235	Enantioselective Cyclization of Alkene Radical Cations. Organic Letters, 2003, 5, 3767-3769.	2.4	31
236	Oxazolidinone Protection ofN-Acetylglucosamine Confers High Reactivity on the 4-Hydroxy Group in Glycosylation. Organic Letters, 2003, 5, 1297-1300.	2.4	57
237	Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12554-12558.	3.3	48
238	1-Benzenesulfinyl Piperidine (BSP)/Triflic Anhydride: An Effective Combination for the Hydrolysis of Dithioacetals. Synlett, 2003, 2003, 1257.	1.0	9
239	Radical Contraction of 1,3,2-Dioxaphosphepanes to 1,3,2-Dioxaphosphorinanes:Â A Kinetic and170 NMR Spectroscopic Study. Journal of Organic Chemistry, 2002, 67, 3360-3364.	1.7	16
240	Diastereoselectivity in the Cyclization of Alkene Radical Cations Generated under Non-Oxidizing Conditions:Â Contact Ion Pairs and Memory Effects. Journal of the American Chemical Society, 2002, 124, 12422-12423.	6.6	20
241	Stereoselective Formation of Glycosyl Sulfoxides and Their Subsequent Equilibration: Ring Inversion of an α-Xylopyranosyl Sulfoxide Dependent on the Configuration at Sulfur. Journal of the American Chemical Society, 2002, 124, 6028-6036.	6.6	46
242	Synthesis of the Salmonella Type E1Core Trisaccharide as a Probe for the Generality of 1-(Benzenesulfinyl)piperidine/Triflic Anhydride Combination for Glycosidic Bond Formation from Thioglycosides. Journal of Organic Chemistry, 2002, 67, 4640-4646.	1.7	51
243	Solid-Phase Synthesis of \hat{l}^2 -Mannosides. Journal of the American Chemical Society, 2002, 124, 8867-8869.	6.6	106
244	Confirmation of the Connectivity of 4,8,12,16,20-Pentamethylpentacosylphoshoryl β-d-Mannopyranoside, an Unusual β-Mannosyl Phosphoisoprenoid fromMycobacteriumavium, through Synthesis. Journal of the American Chemical Society, 2002, 124, 2263-2266.	6.6	48
245	Fluorous Dimethyl Sulfide:  A Convenient, Odorless, Recyclable Borane Carrier. Organic Letters, 2002, 4, 4175-4177.	2.4	33
246	Generation and Trapping of Alkene Radical Cations under Nonoxidizing Conditions:  Formation of Six-Membered Rings byExo- andEndo-Mode Cyclizations. Organic Letters, 2002, 4, 2573-2575.	2.4	30
247	CHEMISTRY OF GLYCOSYL TRIFLATES: SYNTHESIS OFÎ ² -MANNOPYRANOSIDES. Journal of Carbohydrate Chemistry, 2002, 21, 663-686.	0.4	96
248	An oxyanion-Hole selective serine protease inhibitor in complex with trypsin. Bioorganic and Medicinal Chemistry, 2002, 10, 41-46.	1.4	18
249	The fluorous Swern and Corey–Kim reactions: scope and mechanism. Tetrahedron, 2002, 58, 3865-3870.	1.0	51
250	Rapid assembly of tetrahydrodibenzofurans and tetrahydrocarbazoles from benzene and o-iodophenols and o-iodoanilines: reductive radical arylation of benzene in action. Tetrahedron, 2002, 58, 3319-3322.	1.0	35
251	The effect of the base in the fragmentation of nucleotide C4′ radicals. Tetrahedron, 2002, 58, 5789-5801.	1.0	9
252	Synthesis of the mannosyl erythritol lipid MEL A; confirmation of the configuration of the meso-erythritol moiety. Tetrahedron, 2002, 58, 35-44.	1.0	40

#	ARTICLE	IF	CITATIONS
253	Why Are the Hydroxy Groups of Partially Protected N-Acetylglucosamine Derivatives Such Poor Glycosyl Acceptors, and What Can Be Done about It? A Comparative Study of the Reactivity of N-Acetyl-, N-Phthalimido-, and 2-Azido-2-deoxy-glucosamine Derivatives in Glycosylation. 2-Picolinyl Ethers as Reactivity-Enhancing Replacements for Benzyl Ethers. Journal of the American Chemical Society, 2001,	6.6	206
254	Product Studies and Laser Flash Photolysis on Alkyl Radicals Containing Two Different Î ² -Leaving Groups Are Consonant with the Formation of an Olefin Cation Radical. Journal of the American Chemical Society, 2001, 123, 3623-3629.	6.6	38
255	1-Benzenesulfinyl Piperidine/Trifluoromethanesulfonic Anhydride:Â A Potent Combination of Shelf-Stable Reagents for the Low-Temperature Conversion of Thioglycosides to Glycosyl Triflates and for the Formation of Diverse Glycosidic Linkages. Journal of the American Chemical Society, 2001, 123. 9015-9020.	6.6	379
256	Fluorous Swern Reaction. Journal of the American Chemical Society, 2001, 123, 7449-7450.	6.6	55
257	Direct Measurement of Enol Ether Radical Cation Reaction Kinetics. Journal of the American Chemical Society, 2001, 123, 6445-6446.	6.6	31
258	Generation and Reaction of Alkene Radical Cations under Nonoxidizing Conditions:  Synthesis of the Pyrrolizidine Nucleus. Organic Letters, 2001, 3, 1917-1919.	2.4	29
259	Dynamics of Alkene Radical Cation/Phosphate Anion Pair Formation from Nucleotide C4â€~ Radicals. The DNA/RNA Paradox Revisited. Journal of the American Chemical Society, 2001, 123, 9239-9245.	6.6	20
260	1]3Subunit of the Antigenic Polysaccharides fromLeptospirabiflexaand the Octameric (1→2)-Linked β-d-Mannan of theCandida albicansPhospholipomannan. X-ray Crystal Structure of a Protected Tetramer. Journal of the American Chemical Society, 2001, 123, 5826-5828.	6.6	72
261	2,4,6-Tri-tert-butylpyrimidine (TTBP): A Cost Effective, Readily Available Alternative to the Hindered Base 2,6-Di-tert-butylpyridine and its 4-Substituted Derivatives in Glycosylation and Other Reactions. Synthesis, 2001, 2001, 0323-0326.	1.2	119
262	Chemistry of Glycosyl Triflates. , 2001, , 53-75.		11
263	Isolation and identification of poly-α-(1→4)-linked 3-O-methyl-d-mannopyranose from a hot-water extract of Mycobacterium vaccae. Carbohydrate Research, 2000, 324, 38-44.	1.1	9
264	An unusual example of steric buttressing in glycosylation. Tetrahedron Letters, 2000, 41, 5643-5646.	0.7	41
265	Direct Stereoselective Synthesis of β-Thiomannosides. Journal of Organic Chemistry, 2000, 65, 801-805.	1.7	71
266	Reaction of sodium cyanide with 5-bromo-1-benzosuberone: a reappraisal. New Journal of Chemistry, 2000, 24, 249-250.	1.4	1
267	S-(4-Methoxyphenyl) Benzenethiosulfinate (MPBT)/Trifluoromethanesulfonic Anhydride:  A Convenient System for the Generation of Glycosyl Triflates from Thioglycosides. Organic Letters, 2000, 2, 4067-4069.	2.4	79
268	Highly Diastereoselective α-Mannopyranosylation in the Absence of Participating Protecting Groups. Journal of Organic Chemistry, 2000, 65, 1291-1297.	1.7	131
269	Inter- and Intramolecular Pathways for the Formation of Tetrahydrofurans from β-(Phosphatoxy)alkyl Radicals. Evidence for a Dissociative Mechanism. Journal of Organic Chemistry, 2000, 65, 523-529.	1.7	46
270	Efficient Conversion of Vicinal Diols to Alkenes by Treatment of the Corresponding Dimesylates with a Catalytic, Minimally Fluorous, Recoverable Diaryl Diselenide and Sodium Borohydride. Organic Letters, 2000, 2, 4029-4031.	2.4	30

#	Article	IF	CITATIONS
271	Efficient, Diastereoselective Chemical Synthesis of a β-Mannopyranosyl Phosphoisoprenoid. Organic Letters, 2000, 2, 3941-3943.	2.4	18
272	Laser Flash Photolysis Kinetic Studies of α-Methoxy-β-phosphatoxyalkyl Radical Heterolysis Reactions: A Method for Alkoxyalkyl Radical Cation Detection. Journal of the American Chemical Society, 2000, 122, 6128-6129.	6.6	40
273	Efficient One-Pot Conversion of Carbonyl Compounds to Their α,β-Unsaturated Derivatives Using a Recoverable, Minimally Fluorous Organoselenium Reagent. Organic Letters, 2000, 2, 989-991.	2.4	30
274	INVENTING RADICAL CHAIN REACTIONS WITH DEREK BARTON AT THE INSTITUT DE CHIMIE DES SUBSTANCES NATURELLES. , 2000, , 9-15.		0
275	One Pot Selective 5′-Oxidation/Olefination of 2′-Deoxynucleosides. Synlett, 1999, 1999, 67-68.	1.0	43
276	?-(Phosphatoxy)alkyl and ?-(acyloxy)alkyl radical migrations studied by laser flash photolysis. Tetrahedron, 1999, 55, 3317-3326.	1.0	21
277	Direct synthesis of β-mannosides. Synthesis of β-D-xyl-(1→2)-β-D-man-(1→4)-α-D-Glc-OMe: A trisaccharide component of the Hyriopsis schlegelii glycosphingolipid. Formation of an orthoester from a xylopyranosyl sulfoxide. Tetrahedron, 1999, 55, 1569-1580.	1.0	47
278	Design, synthesis, application and recovery of a minimally fluorous diaryl diselenide for the catalysis of stannane-mediated radical chain reactions. Tetrahedron, 1999, 55, 14261-14268.	1.0	48
279	On the Role of Neighboring Group Participation and Ortho Esters in β-Xylosylation:Â13C NMR Observation of a Bridging 2-Phenyl-1,3-dioxalenium Ion. Journal of Organic Chemistry, 1999, 64, 5224-5229.	1.7	96
280	Chemistry of Acyl Radicals. Chemical Reviews, 1999, 99, 1991-2070.	23.0	800
281	Synthesis of Tetrahydrofurans by a Tandem Hydrogen Atom Abstraction/Radical Nucleophilic Displacement Sequence. Organic Letters, 1999, 1, 225-228.	2.4	40
282	Asymmetric Synthesis of C4'1̂±-Carboxylated 2'-Deoxynucleosides. Preparation of Oxetanone Derivatives and Influence of Solvent on the Stereochemistry of Base Introduction. Journal of Organic Chemistry, 1999, 64, 4016-4024.	1.7	28
283	β-Phosphatoxyalkyl Radical Reactions:  Competing Phosphate Migration and Phosphoric Acid Elimination from a Radical Cationâ^'Phosphate Anion Pair Formed by Heterolytic Fragmentation. Journal of the American Chemical Society, 1999, 121, 10685-10694.	6.6	62
284	Diverging Effects of Steric Congestion on the Reaction of Tributylstannyl Radicals with Areneselenols and Aryl Bromides and Their Mechanistic Implications. Journal of Organic Chemistry, 1999, 64, 2877-2882.	1.7	24
285	On the Reaction of Tryptophan Derivatives withN-Phenylselenyl Phthalimide:Â The Nature of the Kinetic and Thermodynamic Hexahydropyrrolo[2,3-b]indole Products. Alkylation of Tryptophan with Inversion of Configuration. Journal of Organic Chemistry, 1999, 64, 7218-7223.	1.7	54
286	Chemistry of 4,6-O-Benzylidene-d-glycopyranosyl Triflates:Â Contrasting Behavior between the Gluco and Manno Series. Journal of Organic Chemistry, 1999, 64, 4926-4930.	1.7	150
287	Free-Radical Ring Contraction of Six-, Seven-, and Eight-Membered Lactones by a 1,2-Shift Mechanism. A Kinetic and170 NMR Spectroscopic Study. Journal of Organic Chemistry, 1999, 64, 1762-1764.	1.7	22
288	Heterolytic Cleavage of a Î ² -Phosphatoxyalkyl Radical Resulting in Phosphate Migration or Radical Cation Formation as a Function of Solvent Polarity. Organic Letters, 1999, 1, 153-156.	2.4	46

#	Article	IF	CITATIONS
289	Inhibition of Stannane-Mediated Radical Rearrangements by a Recoverable, Minimally Fluorous Selenol. Organic Letters, 1999, 1, 269-272.	2.4	23
290	Direct chemical synthesis of Î ² -mannopyranosides and other glycosides via glycosyl triflates. Tetrahedron, 1998, 54, 8321-8348.	1.0	292
291	Free radical chemistry of nucleosides and nucleotides. Ring opening of C4′-radicals. Tetrahedron, 1998, 54, 305-318.	1.0	18
292	Direct synthesis of β-d-Xyl-(1→2)-β-d-Man-(1→4)-α-d-Glc-OME: a trisaccharide component of the Hyriopsis schlegelii glycosphingolipid. Tetrahedron Letters, 1998, 39, 1681-1684.	0.7	20
293	Convergent, stereoselective synthesis of the caloporoside disaccharide. Tetrahedron Letters, 1998, 39, 9339-9342.	0.7	14
294	On the stereochemistry of vicinal nucleophilic substitution of β-(phosphatoxy)alkyl radicals. Tetrahedron Letters, 1998, 39, 9377-9380.	0.7	12
295	Stereoselective sulfoxidation of $\hat{l}\pm$ -mannopyranosyl thioglycosides: the exo-anomeric effect in action. Chemical Communications, 1998, , 2763-2764.	2.2	40
296	Absence of Diffusively Free Radical Cation Intermediates in Reactions of β-(Phosphatoxy)alkyl Radicals. Journal of the American Chemical Society, 1998, 120, 211-212.	6.6	19
297	Stannane-Mediated Radical Addition to Arenes. Generation of Cyclohexadienyl Radicals and Increased Propagation Efficiency in the Presence of Catalytic Benzeneselenol. Journal of Organic Chemistry, 1998, 63, 2765-2770.	1.7	87
298	A Convenient Asymmetric Synthesis of 4â€~-α-Carboxylated Nucleosides. Journal of Organic Chemistry, 1998, 63, 3796-3797.	1.7	9
299	Free Radical Chemistry of Î ² -Lactones. Arrhenius Parameters for the Decarboxylative Cleavage and Ring Expansion of 2-Oxetanon-4-ylcarbinyl Radicals. Facilitation of Chain Propagation by Catalytic Benzeneselenol. Journal of the American Chemical Society, 1998, 120, 8298-8304.	6.6	37
300	Direct Formation of β-Mannopyranosides and Other Hindered Glycosides from Thioglycosides. Journal of the American Chemical Society, 1998, 120, 435-436.	6.6	292
301	Free-Radical Chemistry of Lactones: Fragmentation of β-Lactones. The Beneficial Effect of Catalytic Benzeneselenol on Chain Propagation. Journal of Organic Chemistry, 1997, 62, 8624-8625.	1.7	19
302	Nucleotide C3â€~,4â€~-Radical Cations and the Effect of a 2â€~-Oxygen Substituent. The DNA/RNA Paradox. Journal of the American Chemical Society, 1997, 119, 249-250.	6.6	43
303	Generation and Cyclization of Acyl Radicals from Thiol Esters Under Nonreducing, Tin-Free Conditions. Journal of Organic Chemistry, 1997, 62, 5982-5988.	1.7	51
304	Direct Synthesis of β-Mannopyranosides by the Sulfoxide Method. Journal of Organic Chemistry, 1997, 62, 1198-1199.	1.7	248
305	Chemistry of β-(Acyloxy)alkyl and β-(Phosphatoxy)alkyl Radicals and Related Species:  Radical and Radical Ionic Migrations and Fragmentations of Carbonâ ''Oxygen Bonds. Chemical Reviews, 1997, 97, 3273-3312.	23.0	137
306	Are Glycosyl Triflates Intermediates in the Sulfoxide Glycosylation Method? A Chemical and 1H, 13C, and 19F NMR Spectroscopic Investigation. Journal of the American Chemical Society, 1997, 119, 11217-11223.	6.6	355

#	Article	IF	CITATIONS
307	Synthesis of the taxol AB-system by olefination of an A-ring C1 ketone and direct B-ring closure. Tetrahedron, 1997, 53, 7139-7158.	1.0	25
308	Asymmetric synthesis of a taxol C-ring by aldol condensation and radical cyclization. Tetrahedron, 1997, 53, 7127-7138.	1.0	17
309	Nucleotide C4′ radical fragmentation is base-dependent. Tetrahedron Letters, 1997, 38, 8169-8172.	0.7	16
310	Radical Clock Reactions under Pseudo-First-Order Conditions Using Catalytic Quantities of Diphenyl Diselenide. A77Se- and119Sn-NMR Study of the Reaction of Tributylstannane and Diphenyl Diselenide. Journal of Organic Chemistry, 1996, 61, 2368-2373.	1.7	42
311	A Practical Method for the Removal of Organotin Residues from Reaction Mixtures. Journal of Organic Chemistry, 1996, 61, 7200-7201.	1.7	89
312	The β-(Phosphatoxy)alkyl Radical Rearrangement. Rate Constants, Arrhenius Parameters, and Structure Activity Relationships. Journal of the American Chemical Society, 1996, 118, 6666-6670.	6.6	19
313	Generation of Acyl Radicals from Thiolesters by Intramolecular Homolytic Substitution at Sulfur. Journal of Organic Chemistry, 1996, 61, 3566-3570.	1.7	80
314	Free Radical Chemistry of Lactones:Â Ring Contractions and Expansions. Journal of the American Chemical Society, 1996, 118, 7422-7423.	6.6	25
315	Formation of \hat{l}^2 -Mannopyranosides of Primary Alcohols Using the Sulfoxide Method. Journal of Organic Chemistry, 1996, 61, 4506-4507.	1.7	297
316	Diastereoselective Cyclizations of 1,3-Dioxan-2-yl Radicals:Â Chiral Acyl Radical Equivalents. Journal of Organic Chemistry, 1996, 61, 3588-3589.	1.7	16
317	Chemistry of 1-Alkoxy-1-glycosyl Radicals: The Manno- and Rhamnopyranosyl Series. Inversion of α- to β-Pyranosides and the Fragmentation of Anomeric Radicals. Journal of Organic Chemistry, 1996, 61, 605-615.	1.7	85
318	Chemistry of 1-Alkoxy-1-glycosyl Radicals:  Formation of β-Mannopyranosides by Radical Decarboxylation and Decarbonylation of manno-Heptulosonic Acid Glycoside Derivatives. Journal of Organic Chemistry, 1996, 61, 6189-6198.	1.7	40
319	Optimizing the ratio of vinyl radical cyclizations through catalysis with diphenyl diselenide. Tetrahedron Letters, 1996, 37, 3105-3108.	0.7	45
320	Antiovulatory antagonists of LHRH related to antide. Journal of Peptide Science, 1995, 1, 89-108.	0.8	5
321	Conformational analysis of substituted hexahydropyrrolo [2,3-b]indoles and related systems. An unusual example of hindered rotation about sulfonamide Sî—,N bonds. An X-ray crystallographic and NMR study. Tetrahedron, 1995, 51, 2215-2228.	1.0	20
322	The chemistry of cyclic tautomers of tryptophan: Total synthesis of (+)-(ent)-pseudophrynaminol. Tetrahedron, 1995, 51, 6379-6384.	1.0	21
323	Intramolecular hydrogen atom abstraction: The β-oxygen effect in the Norrish type II photoreaction. Tetrahedron, 1995, 51, 11945-11952.	1.0	26
324	Chemistry of .beta(Phosphatoxy)alkyl and .beta(Acyloxy)alkyl Radicals. Migration Reactions: Scope and Stereoselectivity of .beta(Phosphatoxy)alkyl Rearrangement. Mechanism of .beta(Phosphatoxy)alkyl and .beta(Acyloxy)alkyl Migration. Journal of the American Chemical Society, 1995, 117, 11455-11470.	6.6	34

#	Article	IF	CITATIONS
325	Chemistry of Cyclic Tautomers of Tryptophan: Free Radical Reactions at C-2 Occur Preferentially on the Endo-Face of the Diazabicyclooctane Skeleton. Journal of Organic Chemistry, 1995, 60, 6237-6241.	1.7	15
326	An 18O-Labeling Study of the .betaNitroxyalkyl and .beta(Trifluoroacetoxy)alkyl Radical Migrations: Further Examples of a 1,2-Shift Mechanism. Journal of Organic Chemistry, 1995, 60, 4834-4837.	1.7	20
327	Inhibition of Rearrangements in Stannane-Mediated Radical Reduction Reactions by Catalytic Quantities of Diphenyl Diselenide. An Example of Polarity Reversal Catalysis. Journal of Organic Chemistry, 1995, 60, 84-88.	1.7	54
328	Origin of the ".betaOxygen Effect" in the Barton Deoxygenation Reaction. Journal of the American Chemical Society, 1995, 117, 8757-8768.	6.6	42
329	Mechanism of the rearrangement of 2-(vinyloxy)alkyl to 4-ketobutyl radicals. Tetrahedron, 1994, 50, 12305-12312.	1.0	15
330	Intramolecular hydrogen atom abstraction in carbohydrates and nucleosides: Inversion of an α- to β-mannopyranoside and generation of thymidine C-4′ radicals. Tetrahedron Letters, 1994, 35, 6619-6622.	0.7	53
331	Concise synthesis of a taxol A-ring synthon: Formation of a 1,2-alkylidene linkage via acetylene chemistry. Tetrahedron Letters, 1994, 35, 2469-2472.	0.7	22
332	Chemistry of Cyclic Tautomers of Tryptophan: Formation of a Quaternary Center at C3a and Total Synthesis of the Marine Alkaloid (+)-ent-Debromoflustramine B. Journal of Organic Chemistry, 1994, 59, 5543-5549.	1.7	95
333	Cyclic Tautomers of Tryptophan: Enantio- and Diastereoselective Synthesis of .betaSubstituted and .alpha.,.betaDisubstituted Derivatives of Tryptophan. Journal of Organic Chemistry, 1994, 59, 4239-4249.	1.7	44
334	Photoinduced Free Radical Chemistry of the Acyl Tellurides: Generation, Inter- and Intramolecular Trapping, and ESR Spectroscopic Identification of Acyl Radicals. Journal of the American Chemical Society, 1994, 116, 8937-8951.	6.6	144
335	.beta(Phosphatoxy)alkyl and .beta(Acyloxy)alkyl Radical Rearrangements: Evidence for Nondissociative Mechanisms. Journal of the American Chemical Society, 1994, 116, 2631-2632.	6.6	17
336	Stereocontrolled Formation of Quaternary Carbon Centers by Conjugate Addition of Lithium Enolates of Dioxanones to .betaBromoacrylates and .betaBromovinyl Sulfones: Dependence of Stereoselectivity on Alkene Geometry. Journal of Organic Chemistry, 1994, 59, 7921-7923.	1.7	13
337	The free radical chemistry of acyl tellurides: Mechanistic studies and synthetic applications. Tetrahedron Letters, 1993, 34, 1545-1548.	0.7	42
338	The cyclization route to the calcitriol A-ring: a formal synthesis of (+)-1α,25-dihydroxyvitamin D3. Tetrahedron, 1993, 49, 7943-7954.	1.0	39
339	The β-nitroxyalkyl and β-sulfonatoxyalkyl radical rearrangements. Tetrahedron Letters, 1993, 34, 3225-3226.	0.7	17
340	The β-(phosphatoxy)alkyl radical rearrangement. A stereochemical probe of mechanism. Tetrahedron Letters, 1993, 34, 5677-5680.	0.7	14
341	Sequential diastereoselective free radical reactions: Synthesis of an advanced olivomycin A C–D disaccharide. Tetrahedron Letters, 1993, 34, 3385-3388.	0.7	36
342	The .beta(phosphonooxy)alkyl radical rearrangement. Journal of the American Chemical Society, 1993, 115. 1165-1166.	6.6	43

#	Article	IF	CITATIONS
343	The chemistry of acyl tellurides: generation and trapping of acyl radicals, including aryltellurium group transfer. Journal of the American Chemical Society, 1992, 114, 8313-8314.	6.6	104
344	Conformationally restricted amino acids: Diastereoselective substitution at the β-position of L-tryptophan. Tetrahedron Letters, 1992, 33, 6251-6254.	0.7	36
345	An acyl radical initiated tandem 7-endo/5-exo radical cyclization approach to enantiomerically pure bicyclo[5.3.0]decan-2-ones. Tetrahedron Letters, 1992, 33, 875-878.	0.7	29
346	Enantiospecific synthesis of amino acids: preparation of (R)- and (S)-α-methylaspartic acid from (S)-tryptophan. Tetrahedron Letters, 1992, 33, 3405-3408.	0.7	24
347	An asymmetric synthesis of a 1α,25-dihydroxyvitamin D3 A-ring synthon. Tetrahedron Letters, 1992, 33, 1945-1948.	0.7	26
348	Diastereoselective free-radical reactions. Part 2. Synthesis of 2-deoxy-β-C-pyranosides by diastereoselective hydrogen-atom transfer. Journal of the Chemical Society Perkin Transactions 1, 1991, , 2205-2208.	0.9	16
349	On the use of 3-bromopropyne as a reagent for the introduction of the pyruvate moiety. Journal of the Chemical Society Chemical Communications, 1991, , 1289.	2.0	16
350	Diastereoselective free-radical reactions. Part 3. The methyl glucopyranos-1-yl and the 1,2-O-isopropylideneglucopyranos-1-yl radicals: conformational effects on diastereoselectivity. Journal of the Chemical Society Perkin Transactions 1, 1991, , 2209.	0.9	25
351	Diastereoselective radical reactions : β-face selective quenching of the 1,2-O-isopropylidene-3,4,6-tri-O-benzyl-d-glucopyranos-1-yl radical. Tetrahedron Letters, 1991, 32, 2565-2568.	0.7	16
352	Synthesis of 2-deoxy-β-C-pyranosides by diastereoselective hydrogen atom transfer. Tetrahedron Letters, 1990, 31, 1897-1900.	0.7	33
353	Silyl migration and formation of an anhydro derivative on attempted benzylation of 3-O-tert-butyldimethylsilyl-6-O-tosyl-d-glucal. Carbohydrate Research, 1990, 197, 324-326.	1.1	15
354	Diastereoselective free-radical reactions. Part 1. Preparation of 2-deoxy-β-glycosides by synthesis and reductive decarboxylation of 3-deoxyulosonic acid glycosides. Journal of the Chemical Society Perkin Transactions 1, 1990, , 945-954.	0.9	39
355	An effective and facile demonstration of organic photochemistry. Journal of Chemical Education, 1990, 67, 434.	1.1	4
356	β-Trimethylsilylethoxymethyl Chloride as a Formaldehyde Equivalent in Aldol-Type Reactions. Synlett, 1990, 1990, 117-118.	1.0	6
357	Radical chemistry associated with the thiocarbonyl group. Chemical Reviews, 1989, 89, 1413-1432.	23.0	463
358	Preparation of 2-deoxy-β-d-lyxo-hexosides (2-deoxy-β-d-galactosides). Carbohydrate Research, 1989, 190, C3-C6.	1.1	37
359	Reaction of tryptophan derivatives with phenylsulphenyl chloride and phenylselenenyl bromide. Tetrahedron Letters, 1989, 30, 4307-4308.	0.7	18
360	Free-radical addition to di- and tripeptides containing dehydroalanine residues. Tetrahedron, 1989, 45, 5641-5654.	1.0	35

#	Article	IF	CITATIONS
361	Acyl radical cyclizations in synthesis. Part 1. Substituent effects on the mode and efficiency of cyclization of 6-heptenoyl radicals. Tetrahedron, 1989, 45, 6581-6593.	1.0	43
362	Dichotomous reaction pathways in the reaction of triarylphosphine oxides with meerwein's salt. Tetrahedron Letters, 1989, 30, 475-476.	0.7	24
363	Some observations on the mechanism of the Mitsunobu reaction. Journal of Organic Chemistry, 1989, 54, 257-259.	1.7	51
364	Preparation and reactions of some cyclic orthoester derivatives. Tetrahedron, 1988, 44, 2319-2328.	1.0	24
365	On the use of S-(4-alkenyl)-dithiocarbonates as mechanistic probes in the barton-McCombie radical deoxygenation reaction. Tetrahedron Letters, 1988, 29, 5805-5806.	0.7	17
366	Some studies on 6, 7-unsaturated carbonyl radical cyclizations. Tetrahedron Letters, 1988, 29, 2585-2588.	0.7	29
367	Stereoselective free radical reactions in the preparation of 2-deoxy-β-D-glucosides. Journal of the Chemical Society Chemical Communications, 1988, .	2.0	61
368	A New Method for the Synthesis oftert-Alkyl Chlorides fromtert-Alcohols. Synthesis, 1987, 1987, 35-37.	1.2	25
369	Stereoselectivity in free radical reactions. Tetrahedron Letters, 1987, 28, 4205-4208.	0.7	33
370	On the effect of ring size in the cyclization of carbonyl and vinyl radicals onto alkenes. Tetrahedron Letters, 1987, 28, 2895-2898.	0.7	53
371	On the mechanism of the deoxygenation of secondary alcohols by the reduction of their methyl xanthates by tin hydrides. Tetrahedron, 1986, 42, 2329-2338.	1.0	119
372	The invention of new radical chain reactions. Part 12. Improved methods for the addition of carbon radicals to substituted allylic groups. Journal of the Chemical Society Perkin Transactions 1, 1986, , 1613.	0.9	53
373	The invention of new radical chain reactions. Part VIII. Radical chemistry of thiohydroxamic esters; A new method for the generation of carbon radicals from carboxylic acids. Tetrahedron, 1985, 41, 3901-3924.	1.0	546
374	The free radical chemistry of carboxylic esters of 2-selenopyridineoxide: a convenient synthesis of (L)-vinylglycine. Tetrahedron, 1985, 41, 4347-4357.	1.0	94
375	Oxidation of olefins with 2-pyridineseleninic anhydride. Tetrahedron, 1985, 41, 4359-4364.	1.0	59
376	Formation of quaternary carbon centres from tertiary alcohols by free radical methods. Tetrahedron Letters, 1985, 26, 757-760.	0.7	56
377	On the mechanism of the decarboxylative rearrangement of thiohydroxamic esters. Tetrahedron Letters, 1985, 26, 5943-5946.	0.7	50
378	Formation of carbon-carbon bonds with radicals derived from the esters of thiohydroxamic acids. Tetrahedron Letters, 1984, 25, 1055-1058.	0.7	80

#	Article	IF	CITATIONS
379	Carbethoxyallylation using radical chemistry. Tetrahedron Letters, 1984, 25, 2787-2790.	0.7	31
380	Conversion of aliphatic and alicyclic carboxylic acids into nor-hydroperoxides, nor-alcohols, and nor-oxo derivatives using radical chemistry. Journal of the Chemical Society Chemical Communications, 1984, , 242.	2.0	40
381	A practical alternative to the hunsdiecker reaction. Tetrahedron Letters, 1983, 24, 4979-4982.	0.7	176
382	New and improved methods for the radical decarboxylation of acids. Journal of the Chemical Society Chemical Communications, 1983, , 939.	2.0	348
383	Oxidative deamination of aminodeoxy sugars. Carbohydrate Research, 1979, 72, 312-314.	1.1	3
384	Direct Experimental Characterization of a Bridged Bicyclic Glycosyl Dioxacarbenium IonÂby 1H and 13C NMR Spectroscopy: Importance of Conformation on Participation by Distal Esters Angewandte Chemie, 0, , .	1.6	4
385	Intramolecular displacement reactions involvingÂsulfur leading to the formation of 3,6â€ŧhiaanhydro sugar derivatives during the synthesis of 3,5â€dithioâ€glucofuranose. European Journal of Organic Chemistry, 0, , .	1.2	0