List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8329888/publications.pdf Version: 2024-02-01

ΙΠΑΝ Ε ΟΡΑΝΑΠΑ

#	Article	IF	CITATIONS
1	Clinical validation of a novel simplified offline tool for SYNTAX score calculation. Catheterization and Cardiovascular Interventions, 2022, 99, 1366-1368.	1.7	1
2	Anticoagulation in Patients WithÂCOVID-19. Journal of the American College of Cardiology, 2022, 79, 917-928.	2.8	35
3	Thin-Cap Fibroatheroma Rather Than Any Lipid Plaques Increases the Risk of Cardiovascular Events in Diabetic Patients: Insights From the COMBINE OCT–FFR Trial. Circulation: Cardiovascular Interventions, 2022, 15, 101161CIRCINTERVENTIONS121011728.	3.9	12
4	Microcrystalline paclitaxel-coated balloon for revascularization of femoropopliteal artery disease: Three-year outcomes of the randomized BIOPAC trial. Vascular Medicine, 2021, 26, 401-408.	1,5	6
5	RENASCENT III: First in Human Evaluation of the Novel Thin Strut MAGNITUDE Sirolimus-Eluting Ultra-High Molecular Weight MAGNITUDE Bioresorbable Scaffold: 9-Month Imaging and 2-Year Clinical Results. Circulation: Cardiovascular Interventions, 2021, 14, e010013.	3.9	1
6	Downstream Paclitaxel Released Following Drug-Coated Balloon Inflation and Distal Limb Wound Healing in Swine. JACC Basic To Translational Science, 2021, 6, 416-427.	4.1	2
7	Current Status and Future Prospects of Transcatheter Mitral Valve Replacement. Journal of the American College of Cardiology, 2021, 77, 3058-3078.	2.8	51
8	Thin-cap fibroatheroma predicts clinical events in diabeticâ€,patients with normal fractional flow reserve: the COMBINE OCT–FFR trial. European Heart Journal, 2021, 42, 4671-4679.	2.2	121
9	Advances in transcatheter mitral and tricuspid therapies. BMC Cardiovascular Disorders, 2020, 20, 1.	1.7	91
10	The hypothesis of an increased mortality following paclitaxel coated device use in peripheral vascular interventions (and the emerging era of metaâ€analysis based evidence). Catheterization and Cardiovascular Interventions, 2020, 95, 329-331.	1.7	6
11	Risk factors for myocardial injury in patients with coronavirus disease 2019 in China. ESC Heart Failure, 2020, 7, 4108-4117.	3.1	24
12	Utility of Three-Dimensional Transesophageal Echocardiography for Mitral Annular Sizing in Transcatheter Mitral Valve Replacement Procedures: A Cardiac Computed Tomographic Comparative Study. Journal of the American Society of Echocardiography, 2020, 33, 1245-1252.e2.	2.8	9
13	First in human evaluation of a novel Sirolimus-eluting ultra-high molecular weight bioresorbable scaffold: 9-, 24-and 36-months imaging and clinical results from the multi-center RENASCENT study. International Journal of Cardiology, 2020, 321, 48-53.	1.7	1
14	Early Experience With a Novel Transfemoral Mitral Valve Implantation System in Complex Degenerative MitralÂRegurgitation. JACC: Cardiovascular Interventions, 2020, 13, 2427-2437.	2.9	22
15	Mortality and Paclitaxel-Coated Devices. Circulation, 2020, 141, 1859-1869.	1.6	122
16	Transcatheter Mitral Valve Replacement Guided by Echocardiographic–CT ScanÂFusion. JACC: Cardiovascular Interventions, 2020, 13, 1376-1378.	2.9	5
17	Early scaffold strut coverage in ultra-high molecular weight amorphous PLLA sirolimus-eluting bioresorbable scaffolds: impact of strut thickness assessed in normal porcine coronary arteries. Postepy W Kardiologii Interwencyjnej, 2020, 16, 102-106.	0.2	1
18	Safety of Paclitaxel-Coated Balloons in the Coronary Arteries. Journal of the American College of Cardiology, 2020, 75, 1029-1032.	2.8	5

#	Article	IF	CITATIONS
19	Longâ€term performance and biocompatibility of a novel bioresorbable scaffold for peripheral arteries: A threeâ€year pilot study in Yucatan miniswine. Catheterization and Cardiovascular Interventions, 2020, 95, 1277-1284.	1.7	2
20	First-in-human evaluation of a novel sirolimus-eluting ultra-high molecular weight APTITUDE bioresorbable scaffold: 9- and 24-month imaging and clinical results of the RENASCENT II trial. EuroIntervention, 2020, 16, e133-e140.	3.2	8
21	Two-year longitudinal evaluation of a second-generation thin-strut sirolimus-eluting bioresorbable coronary scaffold with hybrid cell design in porcine coronary arteries. Cardiology Journal, 2020, 27, 115-125.	1.2	8
22	Predictors of adverse outcomes after transcatheter mitral valve replacement. Expert Review of Cardiovascular Therapy, 2019, 17, 625-632.	1.5	7
23	Imaging-assisted nanoimmunotherapy for atherosclerosis in multiple species. Science Translational Medicine, 2019, 11, .	12.4	51
24	Impact of Artificial Intelligence on Interventional Cardiology. JACC: Cardiovascular Interventions, 2019, 12, 1293-1303.	2.9	76
25	Rate of Drug Coating Dissolution Determines In-Tissue Drug Retention and Durability of Biological Efficacy. Journal of Drug Delivery, 2019, 2019, 1-7.	2.5	10
26	The Bioresorbable Vascular Scaffold TaleÂEpilogue. JACC: Cardiovascular Interventions, 2019, 12, 980-982.	2.9	0
27	Translational Research: The Cornerstone for Medical Technology Advancement. Toxicologic Pathology, 2019, 47, 203-204.	1.8	1
28	In vitro mechanical behavior and in vivo healing response of a novel thin-strut ultrahigh molecular weight poly-l-lactic acid sirolimus-eluting bioresorbable coronary scaffold in normal swine. International Journal of Cardiology, 2019, 286, 21-28.	1.7	7
29	Mortality Increase and Paclitaxel-Coated Device Use. JACC: Cardiovascular Interventions, 2019, 12, 2538-2540.	2.9	6
30	Technical Insights on Drug-Coated Balloons. , 2019, , 35-43.		0
31	Current concepts regarding drug dosing for peripheral stents. Journal of Cardiovascular Surgery, 2019, 60, 439-449.	0.6	0
32	Novel ultrahigh molecular weight amorphous PLLA bioresorbable coronary scaffold upsized up to 0.8 mm beyond nominal diameter: An OCT and histopathology study in porcine coronary artery model. Catheterization and Cardiovascular Interventions, 2018, 91, 378-386.	1.7	1
33	First in human evaluation of the vascular biocompatibility and biomechanical performance of a novel ultra high molecular weight amorphous PLLA bioresorbable scaffold in the absence of antiâ€proliferative drugs: Twoâ€year imaging results in humans. Catheterization and Cardiovascular Interventions. 2018. 92. E246-E253.	1.7	7
34	Achieving Health Equity by Normalizing Cardiac Care. Health Equity, 2018, 2, 404-411.	1.9	4
35	Clinical Randomized Trial Evaluating Novel, Microcrystalline, and Biocompatible Polymer Paclitaxel-Coated Balloon forÂthe Treatment of Femoropopliteal Occlusive Disease. JACC: Cardiovascular Interventions, 2018, 11, 2436-2438.	2.9	8
36	Sustainable Antirestenosis Effect With a Low-Dose Drug-Coated Balloon. JACC: Cardiovascular Interventions, 2018, 11, 2357-2364.	2.9	52

#	Article	IF	CITATIONS
37	Drug-Coated Balloons for In-Stent Restenosis. JACC: Cardiovascular Interventions, 2018, 11, 2378-2380.	2.9	3
38	Catheter-Based Intervention of the "Forgotten―Valve. JACC Basic To Translational Science, 2018, 3, 80-82.	4.1	1
39	Impact of bioresorbable versus permanent polymer on longterm vessel wall inflammation and healing: a comparative drug-eluting stent experimental study. EuroIntervention, 2018, 13, 1670-1679.	3.2	12
40	Impact of Fluoropolymer-Based Paclitaxel Delivery on Neointimal Proliferation and Vascular Healing. Circulation: Cardiovascular Interventions, 2017, 10, .	3.9	24
41	Absorb Bioresorbable Vascular Scaffold Resorption and ImagingÂFindings. JACC: Cardiovascular Interventions, 2017, 10, 746-747.	2.9	0
42	The SABRE Trial (Sirolimus Angioplasty Balloon forÂCoronary In-Stent Restenosis). JACC: Cardiovascular Interventions, 2017, 10, 2029-2037.	2.9	43
43	Comparative Biomechanical Behavior and Healing Profile of a Novel Thinned Wall Ultrahigh Molecular Weight Amorphous Poly- <scp>l</scp> -Lactic Acid Sirolimus-Eluting Bioresorbable Coronary Scaffold. Circulation: Cardiovascular Interventions, 2017, 10, .	3.9	5
44	Angiographic classification of patterns of restenosis following femoropopliteal artery intervention: A proposed scoring system. Catheterization and Cardiovascular Interventions, 2017, 90, 639-646.	1.7	5
45	Significant radiation reduction in interventional fluoroscopy using a novel eye controlled movable region of interest. Medical Physics, 2016, 43, 1531-1538.	3.0	5
46	Comparative Characterization of Biomechanical Behavior and Healing Profile of a Novel Ultra-High-Molecular-Weight Amorphous Poly- l -Lactic Acid Sirolimus-Eluting Bioresorbable Coronary Scaffold. Circulation: Cardiovascular Interventions, 2016, 9, .	3.9	12
47	InÂVivo PET Imaging of HDL in MultipleÂAtherosclerosisÂModels. JACC: Cardiovascular Imaging, 2016, 9, 950-961.	5.3	78
48	Drug-coated balloon treatment for lower extremity vascular disease intervention: an international positioning document. European Heart Journal, 2016, 37, 1096-1103.	2.2	73
49	Biological effect on drug distribution and vascular healing via paclitaxelâ€coated balloon technology in drug eluting stent restenosis swine model. Catheterization and Cardiovascular Interventions, 2016, 88, 89-98.	1.7	13
50	An update on the clinical use of drug-coated balloons in percutaneous coronary interventions. Expert Opinion on Drug Delivery, 2016, 13, 859-872.	5.0	17
51	Four-year polymer biocompatibility and vascular healing profile of a novel ultrahigh molecular weight amorphous PLLA bioresorbable vascular scaffold: an OCT study in healthy porcine coronary arteries. EuroIntervention, 2016, 12, 1510-1518.	3.2	14
52	In vivo delivery and long-term tissue retention of nano-encapsulated sirolimus using a novel porous balloon angioplasty system. EuroIntervention, 2016, 12, 740-747.	3.2	30
53	Vascular lumen preservation and optimization for in vivo-like peripheral vasculature dimensions in histology for proper preclinical peripheral, non-permanent scaffold, device evaluation. Journal of Histotechnology, 2015, 38, 104-112.	0.5	1
54	First in vivo evaluation of a flexible selfâ€apposing left atrial appendage closure device in the canine model. Catheterization and Cardiovascular Interventions, 2015, 86, 173-181.	1.7	7

#	Article	IF	CITATIONS
55	Impact of Paclitaxel Dose on Tissue Pharmacokinetics and Vascular Healing. JACC: Cardiovascular Interventions, 2015, 8, 1115-1123.	2.9	94
56	Very Late Thrombosis After BioresorbableÂScaffolds. Journal of the American College of Cardiology, 2015, 66, 1915-1917.	2.8	43
57	Stenting and Adjunctive Delivery of Paclitaxel Via Balloon Coating Versus Durable Polymeric Matrix for De Novo Coronary Lesions: Clinical and Angiographic Results from the Prospective Randomized Trial. Journal of Interventional Cardiology, 2015, 28, 348-357.	1.2	12
58	Mechanisms of tissue uptake and retention of paclitaxel-coated balloons: impact on neointimal proliferation and healing. Open Heart, 2014, 1, e000117.	2.3	103
59	Experimental evaluation of pharmacokinetic profile and biological effect of a novel paclitaxel microcrystalline balloon coating in the iliofemoral territory of swine. Catheterization and Cardiovascular Interventions, 2014, 83, 325-333.	1.7	19
60	Longâ€ŧerm impact of balloon postdilatation on neointimal formation: An experimental comparative study between secondâ€generation selfâ€expanding versus balloonâ€expandable stent technologies. Catheterization and Cardiovascular Interventions, 2014, 83, 397-404.	1.7	5
61	Peri-strut low-intensity areas in optical coherence tomography correlate with peri-strut inflammation and neointimal proliferation. Coronary Artery Disease, 2014, 25, 595-601.	0.7	21
62	Experimental evaluation of efficacy and healing response of everolimus-eluting stents in the familial hypercholesterolemic swine model. Coronary Artery Disease, 2014, 25, 198-207.	0.7	13
63	The association between experience and proficiency with robotic-enhanced coronary intervention—insights from the PRECISE multi-center study. Acute Cardiac Care, 2014, 16, 37-40.	0.2	26
64	Biological effect of orbital atherectomy and adjunctive paclitaxel-coated balloon therapy on vascular healing and drug retention: early experimental insights into the familial hypercholesterolaemic swine model of femoral artery stenosis. EuroIntervention, 2014, 10, 1002-1008.	3.2	20
65	How Can Imaging Preclinical Models Help Us with TAVR?. , 2014, , 461-471.		0
66	Renal artery nerve distribution and density in the porcine model: biologic implications for the development of radiofrequency ablation therapies. Translational Research, 2013, 162, 381-389.	5.0	64
67	Tissue Uptake, Distribution, and Healing Response After Delivery of Paclitaxel via Second-Generation Iopromide-Based Balloon Coating. JACC: Cardiovascular Interventions, 2013, 6, 883-890.	2.9	40
68	Safety and Feasibility of Robotic Percutaneous Coronary Intervention. Journal of the American College of Cardiology, 2013, 61, 1596-1600.	2.8	234
69	Paclitaxel coated balloons, the time for awareness has come. International Journal of Cardiology, 2013, 164, 1-2.	1.7	11
70	Impact of Parallel Micro-Engineered Stent Grooves on Endothelial Cell Migration, Proliferation, and Function. Circulation: Cardiovascular Interventions, 2012, 5, 499-507.	3.9	39
71	Renal Denervation Therapies for Refractory Hypertension. Current Cardiology Reports, 2012, 14, 619-625.	2.9	1
72	Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies. Journal of the American College of Cardiology, 2012, 59, 1058-1072.	2.8	1,530

#	Article	IF	CITATIONS
73	Evaluation of Efficacy and Dose Response of Different Paclitaxel-Coated Balloon Formulations in a Novel Swine Model of Iliofemoral In-Stent Restenosis. JACC: Cardiovascular Interventions, 2012, 5, 1081-1088.	2.9	28
74	Detection of High-Risk Atherosclerotic Plaque. JACC: Cardiovascular Imaging, 2012, 5, 941-955.	5.3	198
75	Longâ€term effects on vascular healing of bare metal stents delivered via paclitaxelâ€coated balloons in the porcine model of restenosis. Catheterization and Cardiovascular Interventions, 2012, 80, 603-610.	1.7	23
76	Low-dose sirolimus-eluting hydroxyapatite coating on stents does not increase platelet activation and adhesion ex vivo. Journal of Thrombosis and Thrombolysis, 2012, 34, 91-98.	2.1	11
77	Correlation of Angiographic Late Loss With Neointimal Proliferation in Stents Evaluated by OCT and Histology in Porcine Coronary Arteries. JACC: Cardiovascular Imaging, 2011, 4, 1002-1010.	5.3	13
78	Assessing the Durability of Durable Stent Polymers: Will They Pass the Test of Time?. Journal of Interventional Cardiology, 2011, 24, 162-164.	1.2	1
79	Intramural coronary lipid injection induces atheromatous lesions expressing proinflammatory chemokines: implications for the development of a porcine model of atherosclerosis. Cardiovascular Revascularization Medicine, 2011, 12, 304-311.	0.8	11
80	First-in-Human Evaluation of a Novel Robotic-Assisted Coronary Angioplasty System. JACC: Cardiovascular Interventions, 2011, 4, 460-465.	2.9	124
81	Vascular Response to Zotarolimus-Coated Balloons in Injured Superficial Femoral Arteries of the Familial Hypercholesterolemic Swine. Circulation: Cardiovascular Interventions, 2011, 4, 447-455.	3.9	66
82	Platelet-Mediated Thrombosis and Drug-Eluting Stents. Circulation: Cardiovascular Interventions, 2011, 4, 629-637.	3.9	7
83	Paclitaxel-iopromide coated balloon followed by "bail-out―bare metal stent in porcine iliofemoral arteries: first report on biological effects in peripheral circulation. EuroIntervention, 2011, 7, 362-368.	3.2	12
84	First clinical evaluation of a luminal self-expanding shield in patients with intermediate coronary lesions. EuroIntervention, 2011, 7, 780-788.	3.2	3
85	Low-pressure self-expandable luminal shield system: mechanical stabilization of high-risk coronary atherosclerotic lesions. Interventional Cardiology, 2010, 2, 493-499.	0.0	3
86	Patterns of activation and deposition of platelets exposed to the polymeric surface of the paclitaxel eluting stent. Journal of Thrombosis and Thrombolysis, 2010, 29, 60-69.	2.1	9
87	Anti-CD34 Antibodies Immobilized on the Surface of Sirolimus-Eluting Stents Enhance Stent Endothelialization. JACC: Cardiovascular Interventions, 2010, 3, 68-75.	2.9	143
88	Development of a Novel Prohealing Stent Designed to Deliver Sirolimus From a Biodegradable Abluminal Matrix. Circulation: Cardiovascular Interventions, 2010, 3, 257-266.	3.9	114
89	Unreliable Assessment of Necrotic Core by Virtual Histology Intravascular Ultrasound in Porcine Coronary Artery Disease. Circulation: Cardiovascular Imaging, 2010, 3, 384-391.	2.6	200
90	Drug-Coated Balloons for the Prevention of Vascular Restenosis. Circulation, 2010, 121, 2672-2680.	1.6	156

#	Article	IF	CITATIONS
91	Accuracy of Optical Coherence Tomography in the Evaluation of Neointimal Coverage After Stent Implantation. JACC: Cardiovascular Imaging, 2010, 3, 76-84.	5.3	131
92	Coronary bare metal stent implantation in homozygous LDL receptor deficient swine induces a neointimal formation pattern similar to humans. Atherosclerosis, 2010, 213, 518-524.	0.8	28
93	Familial hypercholesterolaemic downsized pig with human-like coronary atherosclerosis: a model for preclinical studies. EuroIntervention, 2010, 6, 261-268.	3.2	72
94	Porcine models of coronary atherosclerosis and vulnerable plaque for imaging and interventional research. EuroIntervention, 2009, 5, 140-148.	3.2	76
95	Diagnosis and treatment of coronary vulnerable plaques. Expert Review of Cardiovascular Therapy, 2008, 6, 209-222.	1.5	19
96	Drug-Eluting Stents in Preclinical Studies. Circulation: Cardiovascular Interventions, 2008, 1, 143-153.	3.9	197
97	vProtectâ"¢ luminal shield system. EuroIntervention, 2007, 3, 416-419.	3.2	12
98	Potential role of activated platelets in homing of human endothelial progenitor cells to subendothelial matrix. Thrombosis and Haemostasis, 2006, 96, 498-504.	3.4	79
99	Potential role of activated platelets in homing of human endothelial progenitor cells to	3.4	28