Peiwen Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8329445/publications.pdf

Version: 2024-02-01

758635 940134 16 503 12 16 citations h-index g-index papers 16 16 16 670 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Biomimetic confined self-assembly of chitin nanocrystals. Nano Today, 2022, 43, 101420.	6.2	7
2	Direct Preparation of Nanocelluloses of Tunable Lengths from Native Wood Via Alkaline Periodate Oxidation. Advanced Sustainable Systems, 2021, 5, 2100058.	2.7	6
3	Unexpected selective alkaline periodate oxidation of chitin for the isolation of chitin nanocrystals. Green Chemistry, 2021, 23, 745-751.	4.6	19
4	Structure Selectivity of Alkaline Periodate Oxidation on Lignocellulose for Facile Isolation of Cellulose Nanocrystals. Angewandte Chemie - International Edition, 2020, 59, 3218-3225.	7.2	50
5	Structure Selectivity of Alkaline Periodate Oxidation on Lignocellulose for Facile Isolation of Cellulose Nanocrystals. Angewandte Chemie, 2020, 132, 3244-3251.	1.6	10
6	Selective Isolation Methods for Cellulose and Chitin Nanocrystals. ChemPlusChem, 2020, 85, 1081-1088.	1.3	16
7	pH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery. RSC Advances, 2020, 10, 4860-4868.	1.7	25
8	Interfacial Synthesis of Cellulose-Derived Solvent-Responsive Nanoparticles via Schiff Base Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16595-16603.	3.2	24
9	Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell. Chemosphere, 2019, 232, 396-402.	4.2	51
10	Dialdehyde Cellulose as a Bio-Based Robust Adhesive for Wood Bonding. ACS Sustainable Chemistry and Engineering, 2019, 7, 10452-10459.	3.2	86
11	Robust, Easyâ€Cleaning Superhydrophobic/Superoleophilic Copper Meshes for Oil/Water Separation under Harsh Conditions. Advanced Materials Interfaces, 2019, 6, 1900158.	1.9	20
12	Facile fabrication of pH-responsive nanoparticles from cellulose derivatives via Schiff base formation for controlled release. Carbohydrate Polymers, 2019, 216, 113-118.	5.1	48
13	Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose. Journal of Colloid and Interface Science, 2018, 513, 629-637.	5.0	63
14	Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas. Frontiers of Chemical Science and Engineering, 2018, 12, 383-389.	2.3	6
15	Efficient, Selfâ€Terminating Isolation of Cellulose Nanocrystals through Periodate Oxidation in Pickering Emulsions. ChemSusChem, 2018, 11, 3581-3585.	3.6	20
16	Formation of Uniform Multi-Stimuli-Responsive and Multiblock Hydrogels from Dialdehyde Cellulose. ACS Sustainable Chemistry and Engineering, 2017, 5, 5313-5319.	3.2	52