List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8329363/publications.pdf Version: 2024-02-01

HONG-LIANG LU

#	Article	IF	CITATIONS
1	GaN-Based Micro-Light-Emitting Diode Driven by a Monolithic Integrated Ultraviolet Phototransistor. IEEE Electron Device Letters, 2022, 43, 80-83.	2.2	13
2	A Fully Flexible Intelligent Thermal Touch Panel Based on Intrinsically Plastic Ag ₂ S Semiconductor. Advanced Materials, 2022, 34, e2107479.	11.1	23
3	Self-limiting nitrogen/hydrogen plasma radical chemistry in plasma-enhanced atomic layer deposition of cobalt. Nanoscale, 2022, 14, 4712-4725.	2.8	5
4	A stretchable hardness sensor for systemic sclerosis diagnosis. Nano Energy, 2022, 98, 107242.	8.2	13
5	A Heterostructured Graphene Quantum Dots/β-Ga ₂ O ₃ Solar-Blind Photodetector with Enhanced Photoresponsivity. ACS Applied Materials & Interfaces, 2022, 14, 16846-16855.	4.0	22
6	Investigation of stretchable strain sensor based on CNT/AgNW applied in smart wearable devices. Nanotechnology, 2022, 33, 255501.	1.3	23
7	Pt Nanoparticle-Modified SnO ₂ –ZnO Core–Shell Nanosheets on Microelectromechanical Systems for Enhanced H ₂ S Detection. ACS Applied Nano Materials, 2022, 5, 6627-6636.	2.4	11
8	Effective Suppression of MIS Interface Defects Using Boron Nitride toward High-Performance Ta-Doped-β-Ga ₂ O ₃ MISFETs. Journal of Physical Chemistry Letters, 2022, 13, 3377-3381.	2.1	5
9	Investigation of a Macromolecular Additive on the Decrease of the Aluminum Horizontal Etching Rate in the Wet Etching Process. Metals, 2022, 12, 813.	1.0	0
10	Highly sensitive and stable MEMS acetone sensors based on well-designed α-Fe2O3/C mesoporous nanorods. Journal of Colloid and Interface Science, 2022, 622, 156-168.	5.0	17
11	A high-performance self-powered photodetector based on WSe ₂ –graphene–MoTe ₂ van der Waals heterojunctions. Journal of Materials Chemistry C, 2022, 10, 9401-9406.	2.7	15
12	Dual Alâ,,Oâ,ƒ/Hfâ,€.â,Zrâ,€.â,Oâ,, Stack Thin Films for Improved Ferroelectricity and Reliability. IEEE Electron I Letters, 2022, 43, 1235-1238.	Device 2.2	11
13	High responsivity and flexible deep-UV phototransistor based on Ta-doped β-Ga2O3. Npj Flexible Electronics, 2022, 6, .	5.1	28
14	A Co-Optimization Method of Actuators/Sensors Placement and LQG Controller for Vibration Suppression. IEEE Access, 2021, 9, 29482-29489.	2.6	1
15	Reactions of ruthenium cyclopentadienyl precursor in the metal precursor pulse of Ru atomic layer deposition. Journal of Materials Chemistry C, 2021, 9, 2919-2932.	2.7	5
16	Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO ₂ . Energy and Environmental Science, 2021, 14, 3447-3454.	15.6	115
17	Fabrication of 1D Te/2D ReS ₂ Mixed-Dimensional van der Waals <i>p-n</i> Heterojunction for High-Performance Phototransistor. ACS Nano, 2021, 15, 3241-3250.	7.3	91
18	Spider Web-like Flexible Tactile Sensor for Pressure-Strain Simultaneous Detection. ACS Applied Materials & Interfaces, 2021, 13, 10428-10436.	4.0	37

#	Article	IF	CITATIONS
19	Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization. Crystals, 2021, 11, 295.	1.0	23
20	Dual-gate MoS ₂ phototransistor with atomic-layer-deposited HfO ₂ as top-gate dielectric for ultrahigh photoresponsivity. Nanotechnology, 2021, 32, 215203.	1.3	9
21	Preparation of single crystalline AlN thin films on ZnO nanostructures by atomic layer deposition at low temperature. Nanotechnology, 2021, 32, 275704.	1.3	4
22	Nonlinear growth of zinc tin oxide thin films prepared by atomic layer deposition. Ceramics International, 2021, 47, 22760-22767.	2.3	2
23	Hollow MXene Sphere-Based Flexible E-Skin for Multiplex Tactile Detection. ACS Applied Materials & Interfaces, 2021, 13, 45924-45934.	4.0	34
24	Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial. Nano Energy, 2021, 87, 106181.	8.2	86
25	Nb2C MXenes modified SnO2 as high quality electron transfer layer for efficient and stability perovskite solar cells. Nano Energy, 2021, 89, 106455.	8.2	40
26	High optoelectronic performance of a local-back-gate ReS ₂ /ReSe ₂ heterojunction phototransistor with hafnium oxide dielectric. Nanoscale, 2021, 13, 14435-14441.	2.8	7
27	Improved electro-optical and photoelectric performance of GaN-based micro-LEDs with an atomic layer deposited AIN passivation layer. Optics Express, 2021, 29, 36559.	1.7	15
28	A skin-like sensor for intelligent Braille recognition. Nano Energy, 2020, 68, 104346.	8.2	87
29	Facile synthesis of α-Fe2O3/ZnO core-shell nanowires for enhanced H2S sensing. Sensors and Actuators B: Chemical, 2020, 307, 127617.	4.0	54
30	Investigation of Light-Stimulated α-IGZO Based Photoelectric Transistors for Neuromorphic Applications. IEEE Transactions on Electron Devices, 2020, 67, 3141-3145.	1.6	10
31	Fabrication of a Nb-Doped β-Ga ₂ O ₃ Nanobelt Field-Effect Transistor and Its Low-Temperature Behavior. ACS Applied Materials & Interfaces, 2020, 12, 8437-8445.	4.0	18
32	ZnO branched p-CuxO @n-ZnO heterojunction nanowires for improving acetone gas sensing performance. Sensors and Actuators B: Chemical, 2020, 324, 128729.	4.0	39
33	Hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing. Microsystems and Nanoengineering, 2020, 6, 30.	3.4	47
34	High-energy x-ray radiation effects on the exfoliated quasi-two-dimensional <i>l²</i> -Ga ₂ O ₃ nanoflake field-effect transistors. Nanotechnology, 2020, 31, 345206.	1.3	7
35	Atomic Layer Deposition of Ga ₂ O ₃ /ZnO Composite Films for High-Performance Forming-Free Resistive Switching Memory. ACS Applied Materials & Interfaces, 2020, 12, 30538-30547.	4.0	37
36	Hofmeister‣ffectâ€Guided Ionohydrogel Design as Printable Bioelectronic Devices. Advanced Materials, 2020, 32, e2000189.	11.1	31

#	Article	IF	CITATIONS
37	Flexible Poly(Vinyl Alcohol)–Graphene Oxide Hybrid Nanocomposite Based Cognitive Memristor with Pavlovianâ€Conditioned Reflex Activities. Advanced Electronic Materials, 2020, 6, 1901402.	2.6	31
38	Ultrahigh-Sensitive Finlike Double-Sided E-Skin for Force Direction Detection. ACS Applied Materials & Interfaces, 2020, 12, 14136-14144.	4.0	44
39	Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy, 2020, 76, 105064.	8.2	118
40	Effect of rapid thermal annealing on the properties of zinc tin oxide films prepared by plasma-enhanced atomic layer deposition. Ceramics International, 2020, 46, 13033-13039.	2.3	7
41	Modification of 1D TiO ₂ nanowires with GaO _x N _y by atomic layer deposition for TiO ₂ @GaO _x N _y core–shell nanowires with enhanced photoelectrochemical performance. Nanoscale, 2020, 12, 7159-7173.	2.8	22
42	Fabrication of a Micro-Electromechanical System-Based Acetone Gas Sensor Using CeO ₂ Nanodot-Decorated WO ₃ Nanowires. ACS Applied Materials & Interfaces, 2020, 12, 14095-14104.	4.0	124
43	Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing. Journal of Colloid and Interface Science, 2020, 568, 81-88.	5.0	86
44	Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory. ACS Applied Materials & Interfaces, 2020, 12, 7833-7839.	4.0	41
45	Nanoscale All-Oxide-Heterostructured Bio-inspired Optoresponsive Nociceptor. Nano-Micro Letters, 2020, 12, 83.	14.4	33
46	ALD-based hydrothermal facile synthesis of a dense WO ₃ @TiO ₂ –Fe ₂ O ₃ nanodendrite array with enhanced photoelectrochemical properties. Journal of Materials Chemistry C, 2020, 8, 6756-6762.	2.7	13
47	Geometric Structure and Electronic Polarization Synergistically Boost Hydrogen Evolution Kinetics in Alkaline Medium. Journal of Physical Chemistry Letters, 2020, 11, 3436-3442.	2.1	18
48	Reaction Mechanism of the Metal Precursor Pulse in Plasma-Enhanced Atomic Layer Deposition of Cobalt and the Role of Surface Facets. Journal of Physical Chemistry C, 2020, 124, 11990-12000.	1.5	4
49	Effects of X-ray Irradiation on Vertical GaN-on-GaN Schottky Barrier Diode Biased on the Applied Voltage. , 2020, , .		0
50	Investigation of the Mechanism for Ohmic Contact Formation in Ti/Al/Ni/Au Contacts to β-Ga ₂ O ₃ Nanobelt Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 32127-32134.	4.0	31
51	Facile Synthesis and Photoluminescence Mechanism of ZnO Nanowires Decorated with Cu Nanoparticles Grown by Atomic Layer Deposition. ACS Applied Electronic Materials, 2019, 1, 1616-1625.	2.0	12
52	Chemical Vapor Deposition of Vertically Aligned Carbon Nanotube Arrays: Critical Effects of Oxide Buffer Layers. Nanoscale Research Letters, 2019, 14, 106.	3.1	8
53	The photoemission study of InSb/HfO2 stacks upon N2 rapid thermal annealing. Vacuum, 2019, 168, 108815.	1.6	0
54	Atomic Layer Deposition of Buffer Layers for the Growth of Vertically Aligned Carbon Nanotube Arrays. Nanoscale Research Letters, 2019, 14, 119.	3.1	4

#	Article	IF	CITATIONS
55	Composition and Properties Control Growth of High-Quality GaO _{<i>x</i>} N _{<i>y</i>} Film by One-Step Plasma-Enhanced Atomic Layer Deposition. Chemistry of Materials, 2019, 31, 7405-7416.	3.2	15
56	Low-temperature epitaxial growth of high-quality GaON films on ZnO nanowires for superior photoelectrochemical water splitting. Nano Energy, 2019, 66, 104089.	8.2	23
57	Systematic Study of the SiOx Film with Different Stoichiometry by Plasma-Enhanced Atomic Layer Deposition and Its Application in SiOx/SiO2 Super-Lattice. Nanomaterials, 2019, 9, 55.	1.9	52
58	Investigation of growth characteristics, compositions, and properties of atomic layer deposited amorphous Zn-doped Ga2O3 films. Applied Surface Science, 2019, 476, 733-740.	3.1	71
59	Sub-nanosecond pulse programming and device design strategy for analog resistive switching in HfOx-based resistive random access memory. Applied Physics Letters, 2019, 114, .	1.5	4
60	Sonochemical functionalization of the low-dimensional surface oxide of Galinstan for heterostructured optoelectronic applications. Journal of Materials Chemistry C, 2019, 7, 5584-5595.	2.7	26
61	Fabrication of heterostructured p-CuO/n-SnO2 core-shell nanowires for enhanced sensitive and selective formaldehyde detection. Sensors and Actuators B: Chemical, 2019, 290, 233-241.	4.0	106
62	Atomic Layer Deposition of Inorganic Films for the Synthesis of Vertically Aligned Carbon Nanotube Arrays and Their Hybrids. Coatings, 2019, 9, 806.	1.2	4
63	Chemical, optical, and electrical characterization of Ga2O3 thin films grown by plasma-enhanced atomic layer deposition. Current Applied Physics, 2019, 19, 72-81.	1.1	57
64	High-Performance On-Chip Supercapacitors Based on Mesoporous Silicon Coated with Ultrathin Atomic Layer-Deposited In ₂ O ₃ Films. ACS Applied Materials & Interfaces, 2019, 11, 747-752.	4.0	25
65	Effects of Al ₂ O ₃ Capping and Post-Annealing on the Conduction Behavior in Few-Layer Black Phosphorus Field-Effect Transistors. IEEE Journal of the Electron Devices Society, 2018, 6, 320-324.	1.2	6
66	Investigation of the optical and electrical properties of ZnO/Cu/ZnO multilayers grown by atomic layer deposition. Journal of Alloys and Compounds, 2018, 744, 381-385.	2.8	33
67	Field Effect Transistors Based on In Situ Fabricated Graphene Scaffold–ZrO ₂ Nanofilms. Advanced Electronic Materials, 2018, 4, 1700424.	2.6	4
68	Significant Improvement on Electrochemical Performance of LiMn ₂ O ₄ at Elevated Temperature by Atomic Layer Deposition of TiO ₂ Nanocoating. ACS Sustainable Chemistry and Engineering, 2018, 6, 7890-7901.	3.2	47
69	Water assisted atomic layer deposition of yttrium oxide using tris(<i>N</i> , <i>N</i> ꀲ-diisopropyl-2-dimethylamido-guanidinato) yttrium(<scp>iii</scp>): process development, film characterization and functional properties. RSC Advances, 2018, 8, 4987-4994.	1.7	38
70	Band alignment of SiO2/(Al Ga1-)2O3 (0 ≤≤0.49) determined by X-ray photoelectron spectroscopy. Applied Surface Science, 2018, 434, 440-444.	3.1	38
71	Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 468-476.	4.0	30
72	The role of Anderson's rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures. Physical Chemistry Chemical Physics, 2018, 20, 30351-30364.	1.3	47

#	Article	IF	CITATIONS
73	Precise control of the microstructural, optical, and electrical properties of ultrathin Ga ₂ O ₃ film through nanomixing with few atom-thick SiO ₂ interlayer <i>via</i> plasma enhanced atomic layer deposition. Journal of Materials Chemistry C, 2018, 6, 12518-12528.	2.7	26
74	Enhanced piezoelectric performance of the ZnO/AlN stacked nanofilm nanogenerator grown by atomic layer deposition. APL Materials, 2018, 6, 121109.	2.2	10
75	Measurements of Microstructural, Chemical, Optical, and Electrical Properties of Silicon-Oxygen-Nitrogen Films Prepared by Plasma-Enhanced Atomic Layer Deposition. Nanomaterials, 2018, 8, 1008.	1.9	20
76	Surface-enhanced Raman scattering using nanoporous gold on suspended silicon nitride waveguides. Optics Express, 2018, 26, 24614.	1.7	13
77	Room-Temperature Bound Exciton with Long Lifetime in Monolayer GaN. ACS Photonics, 2018, 5, 4081-4088.	3.2	30
78	Band alignment of AlN/ <i>\hat{l}^2-</i> Ga2O3 heterojunction interface measured by x-ray photoelectron spectroscopy. Applied Physics Letters, 2018, 112, .	1.5	37
79	Oxygen-deficient WO _{3â^'x} @TiO _{2â^'x} core–shell nanosheets for efficient photoelectrochemical oxidation of neutral water solutions. Journal of Materials Chemistry A, 2017, 5, 14697-14706.	5.2	68
80	Band Offsets and Interfacial Properties of HfAlO Gate Dielectric Grown on InP by Atomic Layer Deposition. Nanoscale Research Letters, 2017, 12, 339.	3.1	12
81	Topâ€Down Integration of Molybdenum Disulfide Transistors with Waferâ€Scale Uniformity and Layer Controllability. Small, 2017, 13, 1603157.	5.2	45
82	Stability and strength of atomically thin borophene from first principles calculations. Materials Research Letters, 2017, 5, 399-407.	4.1	172
83	Synthesis of WO3@ZnWO4@ZnO-ZnO hierarchical nanocactus arrays for efficient photoelectrochemical water splitting. Nano Energy, 2017, 41, 543-551.	8.2	61
84	Low-Temperature One-Step Growth of AlON Thin Films with Homogenous Nitrogen-Doping Profile by Plasma-Enhanced Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2017, 9, 38662-38669.	4.0	28
85	Novel Ωâ€Shaped Core–Shell Photodetector with High Ultraviolet Selectivity and Enhanced Responsivity. Advanced Functional Materials, 2017, 27, 1704477.	7.8	29
86	Elemental diffusion study of Ge/Al2O3 and Ge/AlN/Al2O3 interfaces upon post deposition annealing. Surfaces and Interfaces, 2017, 9, 51-57.	1.5	2
87	Effects of Post Annealing Treatments on the Interfacial Chemical Properties and Band Alignment of AlN/Si Structure Prepared by Atomic Layer Deposition. Nanoscale Research Letters, 2017, 12, 102.	3.1	13
88	First-principles study on the electronic, optical, and transport properties of monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>l±</mml:mi> - and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>l²</mml:mi> -GeSe. Physical Review B, 2017, 96</mml:math </mml:math 	1.1	81
89	Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer. Scientific Reports, 2016, 6, 38486.	1.6	7
90	Photoluminescence enhancement of ZnO nanowire arrays by atomic layer deposition of ZrO ₂ layers and thermal annealing. Physical Chemistry Chemical Physics, 2016, 18, 16377-16385.	1.3	15

#	Article	IF	CITATIONS
91	Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al ₂ O ₃ spacer layer. Nanotechnology, 2016, 27, 165705.	1.3	28
92	Low-Cost and High-Productivity Three-Dimensional Nanocapacitors Based on Stand-Up ZnO Nanowires for Energy Storage. Nanoscale Research Letters, 2016, 11, 213.	3.1	18
93	Influence of NH 3 annealing on the chemical states of HfO 2 /Al 2 O 3 stacks studied by X-ray photoelectron spectroscopy. Vacuum, 2016, 124, 60-64.	1.6	3
94	Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al ₂ O ₃ layer. Nanoscale, 2015, 7, 15142-15148.	2.8	23
95	Bandgap narrowing and conductivity evolution of atomic-layer-deposited ZnO:Cu thin films under rapid thermal annealing. Journal of Alloys and Compounds, 2015, 638, 133-135.	2.8	17
96	Facile synthesis and enhanced luminescent properties of ZnO/HfO ₂ core–shell nanowires. Nanoscale, 2015, 7, 15462-15468.	2.8	23
97	Growth and interfacial properties of atomic layer deposited Al0.7Ti0.3O y high-k dielectric on Ge substrate. Applied Physics A: Materials Science and Processing, 2014, 117, 1479-1484.	1.1	2
98	Band alignment and interfacial structure of ZnO/Si heterojunction with Al2O3 and HfO2 as interlayers. Applied Physics Letters, 2014, 104, .	1.5	39
99	Impact of rapid thermal annealing on structural and electrical properties of ZnO thin films grown atomic layer deposition on GaAs substrates. Vacuum, 2014, 103, 1-4.	1.6	13
100	Effect of ozone treatment on the optical and electrical properties of HfSiO thin films. Applied Physics A: Materials Science and Processing, 2014, 116, 259-263.	1.1	2
101	Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition. Nanoscale Research Letters, 2013, 8, 108.	3.1	92
102	Structural, optical, and electrical properties of Hf-doped ZnO films deposited by atomic layer deposition. Surface and Coatings Technology, 2013, 232, 41-45.	2.2	30
103	Effects of rapid thermal annealing on Hf-doped ZnO films grown by atomic layer deposition. Journal of Alloys and Compounds, 2013, 577, 340-344.	2.8	22
104	Optical and microstructural properties of ZnO/TiO2 nanolaminates prepared by atomic layer deposition. Nanoscale Research Letters, 2013, 8, 107.	3.1	32
105	Effects of Rapid Thermal Annealing on Structural, Luminescent, and Electrical Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition. ECS Journal of Solid State Science and Technology, 2012, 1, N45-N48.	0.9	17
106	Influence of Al Doping on the Properties of ZnO Thin Films Grown by Atomic Layer Deposition. Journal of Physical Chemistry C, 2011, 115, 12317-12321.	1.5	88
107	Density Functional Theory Study on the Reaction Mechanisms of Bis(cyclopentadienyl)magnesium with Hydrogenated and Hydroxylated Si(100)-(2×1) Surfaces. Journal of Physical Chemistry A, 2009, 113, 8791-8794.	1.1	10
108	X-ray reflectometry and spectroscopic ellipsometry characterization of Al2O3 atomic layer deposition on HF-last and NH3 plasma pretreatment Si substrates. Journal of Materials Research, 2007, 22, 1214-1218.	1.2	4

#	Article	IF	CITATIONS
109	DFT calculations of NH3 adsorption and dissociation on gallium-rich GaAs(001)-4×2 surface. Chemical Physics Letters, 2007, 445, 188-192.	1.2	7
110	Quantum chemical study of the initial surface reactions of HfO2 atomic layer deposition on the hydroxylated GaAs(001)-4×2 surface. Applied Physics Letters, 2006, 89, 162905.	1.5	16
111	Quantum Chemical Study of Adsorption and Dissociation of H2S on the Gallium-Rich GaAs (001)-4 × 2 Surface. Journal of Physical Chemistry B, 2006, 110, 9529-9533.	1.2	9
112	Spectroscopic and electrical properties of atomic layer deposition Al2O3 gate dielectric on surface pretreated Si substrate. Journal of Applied Physics, 2006, 99, 074109.	1.1	26
113	Characterization of atomic-layer-deposited Al2O3â^•GaAs interface improved by NH3 plasma pretreatment. Applied Physics Letters, 2006, 89, 152910.	1.5	75