Giuseppe Arena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8329291/publications.pdf Version: 2024-02-01

CHISEDDE ADENIA

#	Article	IF	CITATIONS
1	Parkinson's Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by <scp>2â€Hydroxypropylâ€l²â€Cyclodextrin</scp> Treatment. Movement Disorders, 2022, 37, 80-94.	3.9	37
2	AMBRA1 regulates mitophagy by interacting with ATAD3A and promoting PINK1 stability. Autophagy, 2022, 18, 1752-1762.	9.1	25
3	PINK1 Protects against Staurosporine-Induced Apoptosis by Interacting with Beclin1 and Impairing Its Pro-Apoptotic Cleavage. Cells, 2022, 11, 678.	4.1	11
4	Parkin Deficiency Impairs Mitochondrial <scp>DNA</scp> Dynamics and Propagates Inflammation. Movement Disorders, 2022, 37, 1405-1415.	3.9	28
5	Exploring the contribution of the mitochondrial disulfide relay system to Parkinson's disease: the PINK1/CHCHD4 interplay. Neural Regeneration Research, 2021, 16, 2222.	3.0	5
6	Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Molecular Metabolism, 2020, 33, 2-22.	6.5	200
7	Human Dopaminergic Neurons Lacking PINK1 Exhibit Disrupted Dopamine Metabolism Related to Vitamin B6 Co-Factors. IScience, 2020, 23, 101797.	4.1	20
8	The Emerging Role of RHOT1/Miro1 in the Pathogenesis of Parkinson's Disease. Frontiers in Neurology, 2020, 11, 587.	2.4	30
9	Mechanisms of neurodegeneration in Parkinson's disease: keep neurons in the PINK1. Mechanisms of Ageing and Development, 2020, 189, 111277.	4.6	11
10	Targeting MDM2-dependent serine metabolism as a therapeutic strategy for liposarcoma. Science Translational Medicine, 2020, 12, .	12.4	24
11	AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165746.	3.8	37
12	Impaired mitochondrial–endoplasmic reticulum interaction and mitophagy in Miro1-mutant neurons in Parkinson's disease. Human Molecular Genetics, 2020, 29, 1353-1364.	2.9	37
13	Mitochondrial MDM2 Regulates Respiratory Complex I Activity Independently of p53. Molecular Cell, 2018, 69, 594-609.e8.	9.7	68
14	MDM2 controls gene expression independently of p53 in both normal and cancer cells. Cell Death and Differentiation, 2018, 25, 1533-1535.	11.2	15
15	PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy, 2017, 13, 654-669.	9.1	249
16	PINK1 in the limelight: multiple functions of an eclectic protein in human health and disease. Journal of Pathology, 2017, 241, 251-263.	4.5	52
17	Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53. Molecular Cell, 2016, 62, 890-902.	9.7	96
18	Genetics and Molecular Biology of Parkinson Disease. , 2015, , 243-257.		0

18 Genetics and Molecular Biology of Parkinson Disease. , 2015, , 243-257.

GIUSEPPE ARENA

#	Article	IF	CITATIONS
19	Resveratrol inhibits Epstein Barr Virus lytic cycle in Burkitt's lymphoma cells by affecting multiple molecular targets. Antiviral Research, 2012, 96, 196-202.	4.1	67
20	Molecular pathways in sporadic PD. Parkinsonism and Related Disorders, 2012, 18, S71-S73.	2.2	35
21	Resveratrol Inhibits Proliferation and Survival of Epstein Barr Virus–Infected Burkitt's Lymphoma Cells Depending on Viral Latency Program. Molecular Cancer Research, 2011, 9, 1346-1355.	3.4	32
22	Inhibition of p38 MAP kinase pathway induces apoptosis and prevents Epstein Barr virus reactivation in Raji cells exposed to lytic cycle inducing compounds. Molecular Cancer, 2009, 8, 18.	19.2	25
23	PINK1: one protein, multiple neuroprotective functions. Future Neurology, 2009, 4, 575-590.	0.5	4