Jonathan Rochford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8328995/publications.pdf

Version: 2024-02-01

48 papers

2,741 citations

279487 23 h-index 243296 44 g-index

50 all docs

50 docs citations

50 times ranked

4084 citing authors

#	Article	IF	CITATIONS
1	Fast Electron Transport in Metal Organic Vapor Deposition Grown Dye-sensitized ZnO Nanorod Solar Cells. Journal of Physical Chemistry B, 2006, 110, 16159-16161.	1.2	411
2	Tetrachelate Porphyrin Chromophores for Metal Oxide Semiconductor Sensitization:Â Effect of the Spacer Length and Anchoring Group Position. Journal of the American Chemical Society, 2007, 129, 4655-4665.	6.6	367
3	Turning on the Protonation-First Pathway for Electrocatalytic CO ₂ Reduction by Manganese Bipyridyl Tricarbonyl Complexes. Journal of the American Chemical Society, 2017, 139, 2604-2618.	6.6	210
4	Water Oxidation by a Mononuclear Ruthenium Catalyst: Characterization of the Intermediates. Journal of the American Chemical Society, 2011, 133, 14649-14665.	6.6	180
5	Ruthenium complexes with non-innocent ligands: Electron distribution and implications for catalysis. Coordination Chemistry Reviews, 2010, 254, 309-330.	9.5	163
6	Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts. Coordination Chemistry Reviews, 2018, 374, 173-217.	9.5	131
7	Zinc(II) Tetraarylporphyrins Anchored to TiO ₂ , ZnO, and ZrO ₂ Nanoparticle Films through Rigid-Rod Linkers. Langmuir, 2008, 24, 5366-5374.	1.6	128
8	Redox Control of <i>meso</i> -Zinc(II) Ferrocenylporphyrin Based Fluorescence Switches. Inorganic Chemistry, 2007, 46, 7247-7249.	1.9	86
9	Shining Light on the Dark Side of Imaging: Excited State Absorption Enhancement of a Bis-styryl BODIPY Photoacoustic Contrast Agent. Journal of the American Chemical Society, 2014, 136, 15853-15856.	6.6	86
10	Energy Level Alignment of a Zinc(II) Tetraphenylporphyrin Dye Adsorbed onto TiO ₂ (110) and ZnO(112i0) Surfaces. Journal of Physical Chemistry C, 2010, 114, 1139-1147.	1.5	79
11	Characterization of Redox States of Ru(OH $<$ sub $>$ 2 $<$ /sub $>$)(Q)(tpy) $<$ sup $>$ 2+ $<$ /sup $>$ (Q =) Tj ETQq1 1 0.784314 rg Experimental and Theoretical Studies. Inorganic Chemistry, 2009, 48, 4372-4383.	gBT /Overl 1.9	ock 10 Tf 5 <mark>0 3</mark> 73
12	Thienylâ€"Appended porphyrins: Synthesis, photophysical and electrochemical properties, and their applications. Coordination Chemistry Reviews, 2010, 254, 77-102.	9.5	71
13	Evaluation of a Ruthenium Oxyquinolate Architecture for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2012, 51, 1-3.	1.9	66
14	Molecular Photoacoustic Contrast Agents: Design Principles & Applications. Photochemistry and Photobiology, 2018, 94, 1175-1209.	1.3	66
15	Pyrene-Terminated Phenylenethynylene Rigid Linkers Anchored to Metal Oxide Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 15734-15741.	1.2	54
16	Photoelectrochemical Behavior of Polychelate Porphyrin Chromophores and Titanium Dioxide Nanotube Arrays for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 2996-3006.	1.5	53
17	Nonlinear optical properties of multipyrrole dyes. Chemical Physics Letters, 2014, 608, 303-307.	1.2	47
18	A BODIPY-luminol chemiluminescent resonance energy-transfer (CRET) cassette for imaging of cellular superoxide. Organic and Biomolecular Chemistry, 2015, 13, 1763-1767.	1.5	40

#	Article	IF	Citations
19	Synergistic Metal–Ligand Redox Cooperativity for Electrocatalytic CO ₂ Reduction Promoted by a Ligand-Based Redox Couple in Mn and Re Tricarbonyl Complexes. Organometallics, 2019, 38, 1317-1329.	1.1	37
20	Photophysical and Electrochemical Properties of <i>meso</i> -Substituted Thien-2-yl Zn(II) Porphyrins. Journal of Physical Chemistry A, 2008, 112, 11611-11618.	1.1	34
21	Photophysical and Photoacoustic Properties of Quadrupolar Borondifluoride Curcuminoid Dyes. Chemistry - A European Journal, 2018, 24, 906-917.	1.7	28
22	Synthesis, Electronic and Photophysical Characterization of π-Conjugated <i>meso</i> -Ferrocenyl-porphyrin Fluorescent Redox Switches. Organometallics, 2014, 33, 7078-7090.	1.1	26
23	Exploring the Noninnocent Character of Electron Rich π-Extended 8-Oxyquinolate Ligands in Ruthenium(II) Bipyridyl Complexes. Inorganic Chemistry, 2014, 53, 5556-5567.	1.9	26
24	An Investigation of Electrocatalytic CO2 Reduction Using a Manganese Tricarbonyl Biquinoline Complex. Frontiers in Chemistry, 2019, 7, 628.	1.8	26
25	Ambiguous electrocatalytic CO ₂ reduction behaviour of a nickel bis(aldimino)pyridine pincer complex. Dalton Transactions, 2016, 45, 15285-15289.	1.6	25
26	Investigation of Monomeric versus Dimeric <i>fac-</i> Rhenium(I) Tricarbonyl Systems Containing the Noninnocent 8-Oxyquinolate Ligand. Organometallics, 2013, 32, 1832-1841.	1.1	24
27	Oxidation State Characterization of Ruthenium 2â^'Iminoquinone Complexes through Experimental and Theoretical Studies. Inorganic Chemistry, 2010, 49, 860-869.	1.9	21
28	Characterization of a NIR absorbing thienyl curcumin contrast agent for photoacoustic imaging. Chemical Communications, 2018, 54, 6352-6355.	2,2	21
29	Correlation of Photophysical Properties with the Photoacoustic Emission for a Selection of Established Chromophores. Journal of Physical Chemistry C, 2017, 121, 24168-24178.	1.5	19
30	Probing the Noninnocent π-Bonding Influence of <i>N</i> -Carboxyamidoquinolate Ligands on the Light Harvesting and Redox Properties of Ruthenium Polypyridyl Complexes. Inorganic Chemistry, 2016, 55, 2460-2472.	1.9	17
31	Tuning Oxyquinolate Nonâ€Innocence at the Ruthenium Polypyridyl Core. European Journal of Inorganic Chemistry, 2013, 2013, 4410-4420.	1.0	16
32	Synthesis, Structures, and Reactivity of Copper(I) Complexes Supported by a Rigid Dinucleating Ligand. European Journal of Inorganic Chemistry, 2014, 2014, 5865-5873.	1.0	15
33	Engineering of Ruthenium(II) Photosensitizers with Nonâ€Innocent Oxyquinolate and Carboxyamidoquinolate Ligands for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2017, 23, 7497-7507.	1.7	15
34	Coordination Chemistry and Reactivity of Bis(aldimino)pyridine Nickel Complexes in Four Different Oxidation States. Organometallics, 2017, 36, 582-593.	1.1	13
35	Controlled CO release using photochemical, thermal and electrochemical approaches from the amino carbene complex [(CO)5CrC(NC4H8)CH3]. Physical Chemistry Chemical Physics, 2014, 16, 21230-21233.	1.3	10
36	Photoelectrochemical properties of porphyrin dyes with a molecular dipole in the linker. Faraday Discussions, 2015, 185, 497-506.	1.6	9

#	Article	IF	CITATIONS
37	Convergent synthesis of meso-ferrocenyl porphyrins for TiO2 sensitization. Tetrahedron Letters, 2012, 53, 4700-4703.	0.7	8
38	Rigid triarylamine donor–π–acceptor porphyrin dyes and their application in dye-sensitized solar cells. RSC Advances, 2015, 5, 41193-41202.	1.7	8
39	Solar Energy Conversion. , 2018, , 881-918.		7
40	Dyeâ€Sensitized Solarâ€Cell Performance of a Cobalt(III/II) Redox Mediator with the 2,6â€Bis(8â€quinolinyl)pyridine Ligand. European Journal of Inorganic Chemistry, 2015, 2015, 3843-3849.	1.0	6
41	Principles of Photochemical Activation Toward Artificial Photosynthesis and Organic Transformations., 2018,, 729-752.		4
42	Principles of Electrocatalysis., 2018,, 695-727.		4
43	Photophysical and Photoacoustic Properties of <i>i; ∈</i> i >â∈Extended Curcumin Dyes. Effects of the Terminal Dimethylamino Electronâ∈donor and the Bridging Aryl Ring. Photochemistry and Photobiology, 2019, 95, 280-292.	1.3	4
44	Non-innocent ligand flavone and curcumin inspired ruthenium photosensitizers for solar energy conversion. Physical Chemistry Chemical Physics, 2021, 23, 16516-16524.	1.3	2
45	Characterization of Triphenylamine and Ferrocenyl Donorâ€Ï€â€Donor Vinyl BODIPY Derivatives as Photoacoustic Contrast Agents â€. Photochemistry and Photobiology, 2021, , .	1.3	2
46	Ultrafast transport in dye sensitized ZnO nanotips investigated by terahertz spectroscopy. , 2008, , .		0
47	Styryl BODIPY Derivatives as Contrast Agents for In Vivo Photoacoustic Imaging. , 2017, , .		0
48	Design and characterization of donor-Ï€-acceptor vinyl-BODIPY derivatives as molecular photoacoustic contrast agents. , 2021, , .		0