Aaron E Darling

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8328940/aaron-e-darling-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

97	25,117	38	107
papers	citations	h-index	g-index
107	32,148 ext. citations	8.2	6.85
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
97	Critical Assessment of Metagenome Interpretation: the second round of challenges <i>Nature Methods</i> , 2022 ,	21.6	14
96	qc3C: Reference-free quality control for Hi-C sequencing data. <i>PLoS Computational Biology</i> , 2021 , 17, e1008839	5	1
95	Tutorial: assessing metagenomics software with the CAMI benchmarking toolkit. <i>Nature Protocols</i> , 2021 , 16, 1785-1801	18.8	11
94	A large-scale metagenomic survey dataset of the post-weaning piglet gut lumen. <i>GigaScience</i> , 2021 , 10,	7.6	2
93	Strainberry: automated strain separation in low-complexity metagenomes using long reads. <i>Nature Communications</i> , 2021 , 12, 4485	17.4	9
92	Human milk oligosaccharide profiles and allergic disease up to 18 years. <i>Journal of Allergy and Clinical Immunology</i> , 2021 , 147, 1041-1048	11.5	14
91	Post-weaning shifts in microbiome composition and metabolism revealed by over 25 000 pig gut metagenome-assembled genomes. <i>Microbial Genomics</i> , 2021 , 7,	4.4	1
90	Metagenomic Hi-C of a Healthy Human Fecal Microbiome Transplant Donor. <i>Microbiology Resource Announcements</i> , 2020 , 9,	1.3	4
89	Whole Genome Sequencing Analysis of Porcine Faecal Commensal Carrying Class 1 Integrons from Sows and Their Offspring. <i>Microorganisms</i> , 2020 , 8,	4.9	11
88	TraDIS-Xpress: a high-resolution whole-genome assay identifies novel mechanisms of triclosan action and resistance. <i>Genome Research</i> , 2020 , 30, 239-249	9.7	15
87	ST8196 is a novel, locally evolved, and extensively drug resistant pathogenic lineage within the ST131 clonal complex. <i>Emerging Microbes and Infections</i> , 2020 , 9, 1780-1792	18.9	2
86	Genomes from bacteria associated with the canine oral cavity: A test case for automated genome-based taxonomic assignment. <i>PLoS ONE</i> , 2019 , 14, e0214354	3.7	4
85	BEAGLE 3: Improved Performance, Scaling, and Usability for a High-Performance Computing Library for Statistical Phylogenetics. <i>Systematic Biology</i> , 2019 , 68, 1052-1061	8.4	71
84	Identification of a novel lineage of plasmids within phylogenetically diverse subclades of IncHI2-ST1 plasmids. <i>Plasmid</i> , 2019 , 102, 56-61	3.3	4
83	bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes. <i>Genome Biology</i> , 2019 , 20, 46	18.3	33
82	CAMISIM: simulating metagenomes and microbial communities. <i>Microbiome</i> , 2019 , 7, 17	16.6	57
81	High contiguity genome sequence of a multidrug-resistant hospital isolate of. <i>Gut Pathogens</i> , 2019 , 11, 3	5.4	16

80	Molecular techniques and their limitations shape our view of the holobiont. Zoology, 2019, 137, 125695	5 1.7	4
79	Evaluating probabilistic programming and fast variational Bayesian inference in phylogenetics. <i>PeerJ</i> , 2019 , 7, e8272	3.1	7
78	Effective Online Bayesian Phylogenetics via Sequential Monte Carlo with Guided Proposals. <i>Systematic Biology</i> , 2018 , 67, 490-502	8.4	14
77	Sim3C: simulation of Hi-C and Meta3C proximity ligation sequencing technologies. <i>GigaScience</i> , 2018 , 7,	7.6	14
76	Online Bayesian Phylogenetic Inference: Theoretical Foundations via Sequential Monte Carlo. <i>Systematic Biology</i> , 2018 , 67, 503-517	8.4	11
75	Analysis of Theileria orientalis draft genome sequences reveals potential species-level divergence of the Ikeda, Chitose and Buffeli genotypes. <i>BMC Genomics</i> , 2018 , 19, 298	4.5	14
74	Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. <i>PLoS Biology</i> , 2018 , 16, e2006352	9.7	130
73	Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. <i>Microbiome</i> , 2018 , 6, 85	16.6	39
72	Local and relaxed clocks: the best of both worlds. <i>PeerJ</i> , 2018 , 6, e5140	3.1	8
71	Visualization of Biomedical Data. Annual Review of Biomedical Data Science, 2018, 1, 275-304	5.6	34
71 70	Visualization of Biomedical Data. <i>Annual Review of Biomedical Data Science</i> , 2018 , 1, 275-304 Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. <i>Nature Methods</i> , 2017 , 14, 1063-1071	5.6 21.6	
	Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software.		
70	Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nature Methods, 2017, 14, 1063-1071 DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biology, 2017,	21.6	412
7º 69	Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nature Methods, 2017, 14, 1063-1071 DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biology, 2017, 18, 181 The rapid evolution of in ventilator-associated pneumonia patients leads to attenuated virulence.	21.6	412
7° 69 68	Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nature Methods, 2017, 14, 1063-1071 DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biology, 2017, 18, 181 The rapid evolution of in ventilator-associated pneumonia patients leads to attenuated virulence. Open Biology, 2017, 7,	21.6 18.3	412 103 28
7° 69 68	Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nature Methods, 2017, 14, 1063-1071 DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biology, 2017, 18, 181 The rapid evolution of in ventilator-associated pneumonia patients leads to attenuated virulence. Open Biology, 2017, 7, A longitudinal study of the diabetic skin and wound microbiome. PeerJ, 2017, 5, e3543	21.6 18.3 7 3.1	412 103 28 58
7° 69 68 67 66	Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nature Methods, 2017, 14, 1063-1071 DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biology, 2017, 18, 181 The rapid evolution of in ventilator-associated pneumonia patients leads to attenuated virulence. Open Biology, 2017, 7, A longitudinal study of the diabetic skin and wound microbiome. PeerJ, 2017, 5, e3543 Evaluation of ddRADseq for reduced representation metagenome sequencing. PeerJ, 2017, 5, e3837 Porcine commensal Escherichia coli: a reservoir for class 1 integrons associated with IS26. Microbial	21.6 18.3 7 3.1 3.1	412 103 28 58 8

62	Deconvoluting simulated metagenomes: the performance of hard- and soft- clustering algorithms applied to metagenomic chromosome conformation capture (3C). <i>PeerJ</i> , 2016 , 4, e2676	3.1	10
61	Comparative genomic analysis of a multiple antimicrobial resistant enterotoxigenic E. coli O157 lineage from Australian pigs. <i>BMC Genomics</i> , 2015 , 16, 165	4.5	21
60	Metagenomic Chromosome Conformation Capture (3C): techniques, applications, and challenges. <i>F1000Research</i> , 2015 , 4, 1377	3.6	11
59	Comparative Genomics of the Genus Porphyromonas Identifies Adaptations for Heme Synthesis within the Prevalent Canine Oral Species Porphyromonas cangingivalis. <i>Genome Biology and Evolution</i> , 2015 , 7, 3397-413	3.9	15
58	Draft genome sequences of 26 porphyromonas strains isolated from the canine oral microbiome. <i>Genome Announcements</i> , 2015 , 3,		8
57	A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. <i>Bioinformatics</i> , 2015 , 31, 587-9	7.2	640
56	Swabs to genomes: a comprehensive workflow. <i>PeerJ</i> , 2015 , 3, e960	3.1	25
55	Bacterial Communities Vary between Sinuses in Chronic Rhinosinusitis Patients. <i>Frontiers in Microbiology</i> , 2015 , 6, 1532	5.7	16
54	Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders. <i>BMC Genomics</i> , 2014 , 15, 177	4.5	39
53	Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. <i>PLoS Genetics</i> , 2014 , 10, e1004784	6	95
52	The common oceanographer: crowdsourcing the collection of oceanographic data. <i>PLoS Biology</i> , 2014 , 12, e1001947	9.7	27
51	Alignathon: a competitive assessment of whole-genome alignment methods. <i>Genome Research</i> , 2014 , 24, 2077-89	9.7	74
50	A draft genome of Escherichia coli sequence type 127 strain 2009-46. <i>Gut Pathogens</i> , 2014 , 6, 32	5.4	7
49	The genome of Clostridium difficile 5.3. <i>Gut Pathogens</i> , 2014 , 6, 4	5.4	13
48	PhyloSift: phylogenetic analysis of genomes and metagenomes. <i>PeerJ</i> , 2014 , 2, e243	3.1	431
47	Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. <i>PeerJ</i> , 2014 , 2, e415	3.1	79
46	MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. <i>Genome Biology</i> , 2013 , 14, R2	18.3	150
45	Insights into the phylogeny and coding potential of microbial dark matter. <i>Nature</i> , 2013 , 499, 431-7	50.4	1484

(2011-2013)

44	Indigenous Vibrio cholerae strains from a non-endemic region are pathogenic. <i>Open Biology</i> , 2013 , 3, 120181	7	23
43	Draft genome sequence of an Actinobacterium, Brachybacterium muris strain UCD-AY4. <i>Genome Announcements</i> , 2013 , 1, e0008613		9
42	Draft Genome Sequence of Microbacterium sp. Strain UCD-TDU (Phylum Actinobacteria). <i>Genome Announcements</i> , 2013 , 1, e0012013		5
41	Draft Genome Sequence of Kocuria sp. Strain UCD-OTCP (Phylum Actinobacteria). <i>Genome Announcements</i> , 2013 , 1,		5
40	Draft Genome Sequence of Curtobacterium flaccumfaciens Strain UCD-AKU (Phylum Actinobacteria). <i>Genome Announcements</i> , 2013 , 1,		6
39	Progressive genome-wide introgression in agricultural Campylobacter coli. <i>Molecular Ecology</i> , 2013 , 22, 1051-64	5.7	98
38	Draft Genome Sequence of Leucobacter sp. Strain UCD-THU (Phylum Actinobacteria). <i>Genome Announcements</i> , 2013 , 1,		5
37	Draft Genome Sequence of Dietzia sp. Strain UCD-THP (Phylum Actinobacteria). <i>Genome Announcements</i> , 2013 , 1,		5
36	Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices. <i>PLoS ONE</i> , 2013 , 8, e62510	3.7	102
35	BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. <i>Systematic Biology</i> , 2012 , 61, 170-3	8.4	374
34	MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. <i>Systematic Biology</i> , 2012 , 61, 539-42	8.4	14368
33	Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli. <i>BMC Genomics</i> , 2012 , 13, 256	4.5	95
32	An integrated pipeline for de novo assembly of microbial genomes. <i>PLoS ONE</i> , 2012 , 7, e42304	3.7	330
31	Patterns of gene flow define species of thermophilic Archaea. <i>PLoS Biology</i> , 2012 , 10, e1001265	9.7	152
30	Sequencing of seven haloarchaeal genomes reveals patterns of genomic flux. <i>PLoS ONE</i> , 2012 , 7, e413	89 3.7	37
29	Hidden Breakpoints in Genome Alignments. Lecture Notes in Computer Science, 2012, 391-403	0.9	
28	Mauve assembly metrics. <i>Bioinformatics</i> , 2011 , 27, 2756-7	7.2	71
27	Assemblathon 1: a competitive assessment of de novo short read assembly methods. <i>Genome Research</i> , 2011 , 21, 2224-41	9.7	364

26	The Amphimedon queenslandica genome and the evolution of animal complexity. <i>Nature</i> , 2010 , 466, 720-6	50.4	782
25	Inference of homologous recombination in bacteria using whole-genome sequences. <i>Genetics</i> , 2010 , 186, 1435-49	4	118
24	Metagenomic sequencing of an in vitro-simulated microbial community. PLoS ONE, 2010, 5, e10209	3.7	163
23	progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. <i>PLoS ONE</i> , 2010 , 5, e11147	3.7	2526
22	Are protein domains modules of lateral genetic transfer?. PLoS ONE, 2009, 4, e4524	3.7	53
21	Efficient sampling of parsimonious inversion histories with application to genome rearrangement in Yersinia. <i>Genome Biology and Evolution</i> , 2009 , 1, 153-64	3.9	13
20	Reordering contigs of draft genomes using the Mauve aligner. <i>Bioinformatics</i> , 2009 , 25, 2071-3	7.2	389
19	Lateral transfer of genes and gene fragments in prokaryotes. <i>Genome Biology and Evolution</i> , 2009 , 1, 429-38	3.9	54
18	Seevolution: visualizing chromosome evolution. <i>Bioinformatics</i> , 2009 , 25, 960-1	7.2	5
17	A novel heuristic for local multiple alignment of interspersed DNA repeats. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2009 , 6, 180-9	3	13
16	Phylogenetic and molecular analysis of hydrogen-producing green algae. <i>Journal of Experimental Botany</i> , 2009 , 60, 1691-702	7	53
15	Inferring genomic flux in bacteria. <i>Genome Research</i> , 2009 , 19, 306-17	9.7	26
14	Dynamics of genome rearrangement in bacterial populations. <i>PLoS Genetics</i> , 2008 , 4, e1000128	6	156
13	ASAP: a resource for annotating, curating, comparing, and disseminating genomic data. <i>Nucleic Acids Research</i> , 2006 , 34, D41-5	20.1	54
12	Genome-wide detection and analysis of homologous recombination among sequenced strains of Escherichia coli. <i>Genome Biology</i> , 2006 , 7, R44	18.3	60
11	GRIL: genome rearrangement and inversion locator. <i>Bioinformatics</i> , 2004 , 20, 122-4	7.2	38
10	ASAP, a systematic annotation package for community analysis of genomes. <i>Nucleic Acids Research</i> , 2003 , 31, 147-51	20.1	132
9	Critical Assessment of Metagenome Interpretation 🛭 benchmark of computational metagenomics soft	ware	17

LIST OF PUBLICATIONS

8	Effective online Bayesian phylogenetics via sequential Monte Carlo with guided proposals	1
7	Tutorial: Assessing metagenomics software with the CAMI benchmarking toolkit	1
6	Metagenomics Strain Resolution on Assembly Graphs	6
5	CAMISIM: Simulating metagenomes and microbial communities	3
4	bin3C: Exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes (MAGs)	1
3	Trial by phylogenetics - Evaluating the Multi-Species Coalescent for phylogenetic inference on taxa with high levels of paralogy (Gonyaulacales, Dinophyceae)	3
2	Hackflex: low cost Illumina Nextera Flex sequencing library construction	9
1	Automated strain separation in low-complexity metagenomes using long reads	2