List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8328657/publications.pdf Version: 2024-02-01

OLEC MUKHANOV

#	Article	IF	CITATIONS
1	Magnetic Field Sensor Based on a Single Josephson Junction With a Multilayer Ferromagnet/Normal Metal Barrier. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	2
2	Characterization of Amplification Properties of the Superconducting-Ferromagnetic Transistor. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	0
3	Cryogenic Memory Architecture Integrating Spin Hall Effect based Magnetic Memory and Superconductive Cryotron Devices. Scientific Reports, 2020, 10, 248.	3.3	25
4	Bi-SQUID: design for applications. Superconductor Science and Technology, 2020, 33, 113001.	3.5	11
5	Interfacing Superconducting Qubits With Cryogenic Logic: Readout. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	21
6	Symmetric Traveling Wave Parametric Amplifier. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-6.	1.7	24
7	Simulation Analysis and Energy-Saving Techniques for ERSFQ Circuits. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-7.	1.7	14
8	Diagnosis of Factors Impacting Yield in Multilayer Devices for Superconducting Electronics. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.7	1
9	ERSFQ 8-Bit Parallel Arithmetic Logic Unit. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-7.	1.7	31
10	Superconducting-Ferromagnetic Injection-Controlled Switching Device. IEEE Transactions on Applied Superconductivity, 2019, , 1-1.	1.7	2
11	Bi-SQUID Loading. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	2
12	Josephson Junctions for Digital Applications. Springer Series in Materials Science, 2019, , 611-701.	0.6	3
13	Superconducting Magnetic Field Programmable Gate Array. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-12.	1.7	25
14	High-Linearity Bi-SQUID: Design Map. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	10
15	Multiterminal Superconducting-Ferromagnetic Device with Magnetically Tunable Supercurrent for Memory Application. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-4.	1.7	10
16	Properties of Ferromagnetic Josephson Junctions for Memory Applications. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-6.	1.7	24
17	Analysis of Multilayer Devices for Superconducting Electronics by High-Resolution Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	5
18	High-Inductance Bi-SQUID. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	6

#	Article	lF	CITATIONS
19	Investigation of Current Gain in Superconducting-Ferromagnetic Transistors With High-j \${}_{m c}\$ Acceptor. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	6
20	Critical Current Spread and Thermal Noise in Bi-SQUID Cells and Arrays. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	7
21	Coherent oscillations of driven rf SQUID metamaterials. Physical Review E, 2017, 95, 050201.	2.1	16
22	Design Map for Bi-SQUIDs. , 2017, , .		1
23	Dimensional Effects Affecting the Linearity of Active Superconducting Antennas. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	2
24	Critical Current Gain in High-jc Superconducting-Ferromagnetic Transistors. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-7.	1.7	7
25	A Guide to Active Antennas Based on Superconducting Quantum Arrays. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	5
26	Tunable Broadband Transparency of Macroscopic Quantum Superconducting Metamaterials. Physical Review X, 2015, 5, .	8.9	29
27	SQIF Antenna Measurement in Near Field. , 2015, , .		15
28	Output Power and Loading of Superconducting Quantum Array. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	23
29	Wave-Pipelined eSFQ Circuits. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	14
30	Control of Supercurrent in Hybrid Superconducting–Ferromagnetic Transistors. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	20
31	Microwave Dynamics of Superconducting Quantum Cell. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-6.	1.7	5
32	Quantum Sensitivity: Superconducting Quantum Interference Filter-Based Microwave Receivers. IEEE Microwave Magazine, 2014, 15, 57-65.	0.8	23
33	Superconducting Quantum Arrays. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-6.	1.7	26
34	Superconducting-Ferromagnetic Transistor. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-6.	1.7	29
35	Experimental Investigation of Energy-Efficient Digital Circuits Based on eSFQ Logic. IEEE Transactions on Applied Superconductivity, 2013, 23, 1301505-1301505.	1.7	21
36	Magnetic Josephson Junctions With Superconducting Interlayer for Cryogenic Memory. IEEE Transactions on Applied Superconductivity, 2013, 23, 1701208-1701208.	1.7	126

#	Article	IF	CITATIONS
37	Operation of practical eSFQ circuits. , 2013, , .		3
38	Design, fabrication and testing of Superconducting Quantum Interference Device (SQUID) metamaterials. , 2013, , .		0
39	Modeling the effects of fabrication spreads and noise on series coupled arrays of bi-SQUIDs. , 2013, , .		7
40	Active Electrically Small Antenna Based on Superconducting Quantum Array. IEEE Transactions on Applied Superconductivity, 2013, 23, 1800405-1800405.	1.7	44
41	Superconductivity and the environment: a Roadmap. Superconductor Science and Technology, 2013, 26, 113001.	3.5	113
42	Realization and Modeling of Metamaterials Made of rf Superconducting Quantum-Interference Devices. Physical Review X, 2013, 3, .	8.9	44
43	Voltage response of non-uniform arrays of bi-superconductive quantum interference devices. Journal of Applied Physics, 2012, 111, .	2.5	23
44	Magnetic Josephson Junction Technology for Digital and Memory Applications. Physics Procedia, 2012, 36, 35-41.	1.2	91
45	20GHz Operation of an Asynchronous Wave-Pipelined RSFQ Arithmetic-Logic Unit. Physics Procedia, 2012, 36, 59-65.	1.2	94
46	Array designs for active electrically small superconductive antennas. Physica C: Superconductivity and Its Applications, 2012, 479, 119-122.	1.2	31
47	Ferromagnetic Josephson switching device with high characteristic voltage. Applied Physics Letters, 2012, 100, .	3.3	136
48	Superconductor analog-to-digital converters and their applications. , 2011, , .		13
49	Linear Bi-SQUID Arrays for Electrically Small Antennas. IEEE Transactions on Applied Superconductivity, 2011, 21, 713-716.	1.7	34
50	Energy-Efficient Single Flux Quantum Technology. IEEE Transactions on Applied Superconductivity, 2011, 21, 760-769.	1.7	403
51	Progress in high-linearity multi-element Josephson structures. Physica C: Superconductivity and Its Applications, 2010, 470, 886-889.	1.2	25
52	Performance Advantages and Design Issues of SQIFs for Microwave Applications. IEEE Transactions on Applied Superconductivity, 2009, 19, 916-919.	1.7	32
53	Ultra high speed ADCs and DSP brings direct digital RF beam forming to MILSATCOM phased array apertures. , 2009, , .		2
54	High Linearity SQIF-Like Josephson-Junction Structures. IEEE Transactions on Applied Superconductivity, 2009, 19, 741-744.	1.7	27

#	Article	IF	CITATIONS
55	High linearity Josephson-junction array structures. Physica C: Superconductivity and Its Applications, 2008, 468, 813-816.	1.2	7
56	Superconducting Quantum Interference Filters as RF Amplifiers. IEEE Transactions on Applied Superconductivity, 2007, 17, 718-721.	1.7	19
57	Cryocooled wideband digital channelizing radio-frequency receiver based on low-pass ADC. Superconductor Science and Technology, 2007, 20, S323-S327.	3.5	51
58	High Performance, All Digital RF Receiver Tested at 7.5 GigaHertz. , 2007, , .		12
59	All Digital-RF SATCOM Transceiver Provides the Modular Open Systems Architecture Required to Meet HC3 GRA. , 2007, , .		0
60	Development of SQIF-Based Output Broad Band Amplifier. IEEE Transactions on Applied Superconductivity, 2007, 17, 569-572.	1.7	22
61	Superconductor Components for Direct Digital Synthesizer. IEEE Transactions on Applied Superconductivity, 2007, 17, 416-421.	1.7	13
62	Digital Channelizing Radio Frequency Receiver. IEEE Transactions on Applied Superconductivity, 2007, 17, 430-437.	1.7	84
63	Superconducting High-Resolution Low-Pass Analog-to-Digital Converters. IEEE Transactions on Applied Superconductivity, 2007, 17, 442-445.	1.7	41