
Catherine Bennetau-Pelissero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8328571/publications.pdf Version: 2024-02-01

CATHERINE

#	Article	IF	CITATIONS
1	Risks and safety of polyphenol consumption. American Journal of Clinical Nutrition, 2005, 81, 326S-329S.	2.2	268
2	Daidzein Is More Efficient than Genistein in Preventing Ovariectomy-Induced Bone Loss in Rats. Journal of Nutrition, 2000, 130, 1675-1681.	1.3	230
3	Mass Spectrometry-based Metabolomics for the Discovery of Biomarkers of Fruit and Vegetable Intake: Citrus Fruit as a Case Study. Journal of Proteome Research, 2013, 12, 1645-1659.	1.8	147
4	Isoflavones and Functional Foods Alter the Dominant Intestinal Microbiota in Postmenopausal Women. Journal of Nutrition, 2005, 135, 2786-2792.	1.3	129
5	Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. Journal of Nutritional Biochemistry, 2012, 23, 469-477.	1.9	125
6	Soybean Isoflavones Dose-Dependently Reduce Bone Turnover but Do Not Reverse Established Osteopenia in Adult Ovariectomized Rats. Journal of Nutrition, 2001, 131, 723-728.	1.3	99
7	Effect of Genistein-Enriched Diets on the Endocrine Process of Gametogenesis and on Reproduction Efficiency of the Rainbow Trout Oncorhynchus mykiss. General and Comparative Endocrinology, 2001, 121, 173-187.	0.8	97
8	Dose-dependent bone-sparing effects of dietary isoflavones in the ovariectomised rat. British Journal of Nutrition, 2001, 85, 307-316.	1.2	81
9	Enterodiol and enterolactone, two major diet-derived polyphenol metabolites have different impact on ERα transcriptional activation in human breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2008, 110, 176-185.	1.2	80
10	Flavanone metabolites decrease monocyte adhesion to TNF-α-activated endothelial cells by modulating expression of atherosclerosis-related genes. British Journal of Nutrition, 2013, 110, 587-598.	1.2	67
11	Marked antioxidant effect of orange juice intake and its phytomicronutrients in a preliminary randomized cross-over trial on mild hypercholesterolemic men. Clinical Nutrition, 2015, 34, 1093-1100.	2.3	67
12	Synthesis of Haptens and Conjugates for ELISAs of Phytoestrogens. Development of the Immunological Tests. Journal of Agricultural and Food Chemistry, 2000, 48, 305-311.	2.4	55
13	Bioavailability and urinary excretion of isoflavones in humans: Effects of soy-based supplements formulation and equol production. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 1488-1494.	1.4	50
14	Dietary Soy and Soy Isoflavones Have Gender-Specific Effects on Plasma Lipids and Isoflavones in Golden Syrian F1B Hybrid Hamsters. Journal of Nutrition, 2002, 132, 3585-3591.	1.3	41
15	Syntheses of Novel Hapten–Protein Conjugates for Production of Highly Specific Antibodies to Formononetin, Daidzein and Genistein. Tetrahedron, 2000, 56, 295-301.	1.0	39
16	Higher bioavailability of isoflavones after a single ingestion of a soya-based supplement than a soya-based food in young healthy males. British Journal of Nutrition, 2008, 99, 333-344.	1.2	33
17	Risks and benefits of phytoestrogens. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 477-483.	1.3	31
18	Removing isoflavones from modern soyfood: Why and how?. Food Chemistry, 2016, 210, 286-294.	4.2	30

CATHERINE

#	ARTICLE	IF	CITATIONS
19	Respective contribution exerted by AFâ€1 and AFâ€2 transactivation functions in estrogen receptor α induced transcriptional activity by isoflavones and equol: Consequence on breast cancer cell proliferation. Molecular Nutrition and Food Research, 2009, 53, 652-658.	1.5	28
20	Influence of ethnic origin (Asian v. Caucasian) and background diet on the bioavailability of dietary isoflavones. British Journal of Nutrition, 2009, 102, 1642.	1.2	24
21	Isoflavonoid-based bone-sparing treatments exert a low activity on reproductive organs and on hepatic metabolism of estradiol in ovariectomized rats. Toxicology and Applied Pharmacology, 2007, 224, 105-115.	1.3	23
22	Bioavailability of glycitein relatively to other soy isoflavones in healthy young Caucasian men. Food Chemistry, 2012, 135, 1104-1111.	4.2	21
23	Comparative Effects of R- and S-equol and Implication of Transactivation Functions (AF-1 and AF-2) in Estrogen Receptor-Induced Transcriptional Activity. Nutrients, 2010, 2, 340-354.	1.7	20
24	New Evaluation of Isoflavone Exposure in the French Population. Nutrients, 2019, 11, 2308.	1.7	18
25	Surprising Structural Lability of a Cysteineâ€ <i>S</i> â€Conjugate Precursor of 4â€Methylâ€4â€sulfanylpentanâ€2â€one, a Varietal Aroma in Wine of <i>Vitis vinifera</i> L. cv. Sauvignon Blanc. Chemistry and Biodiversity, 2008, 5, 793-810.	1.0	17
26	Use of dietary supplements containing soy isoflavones and breast cancer risk among women aged >50Ây: a prospective study. American Journal of Clinical Nutrition, 2019, 109, 597-605.	2.2	17
27	Synthesis of Haptens and Conjugates for ELISA of Glycitein: Development and Validation of an Immunological Test. Journal of Agricultural and Food Chemistry, 2008, 56, 6809-6817.	2.4	15
28	Plant Proteins from Legumes. Reference Series in Phytochemistry, 2019, , 223-265.	0.2	14
29	Original preparation of conjugates for antibody production against Amicoumacin-related anti-microbial agents. Bioorganic and Medicinal Chemistry, 2008, 16, 9383-9391.	1.4	12
30	The effect of low pH on the glycitein–BSA conjugate interaction with specific antiserum: Competitive inhibition study using surface plasmon resonance technique. Talanta, 2011, 84, 867-873.	2.9	12
31	Development and validation of two new sensitive ELISAs for Hesperetin and Naringenin in biological fluids. Food Chemistry, 2010, 118, 472-481.	4.2	11
32	Endocrine disruptors on and in fruits and vegetables: Estimation of the potential exposure of the French population. Food Chemistry, 2022, 373, 131513.	4.2	11
33	New approach to asymmetrically substituted methoxypyrazines, derivatives of wine flavors. Tetrahedron, 2010, 66, 2463-2469.	1.0	9
34	Isoflavonoids and Phytoestrogenic Activity. , 2013, , 2381-2432.		9
35	Estradiol enhances retention but not organization of hippocampus-dependent memory in intact male mice. Psychoneuroendocrinology, 2016, 69, 77-89.	1.3	9
36	Positive or negative effects of isoflavones: Toward the end of a controversy. Food Chemistry, 2017, 225, 293-301.	4.2	9

CATHERINE

#	Article	IF	CITATIONS
37	Ageâ€related impairment of declarative memory: linking memorization of temporal associations to GluN2B redistribution in dorsal CA1. Aging Cell, 2020, 19, e13243.	3.0	9
38	Induction of Rainbow Trout Estradiol Receptor mRNA and Vitellogenin mRNA by Phytoestrogens in Hepatocyte Culturesa. Annals of the New York Academy of Sciences, 1998, 839, 600-601.	1.8	8
39	Dietary isoflavones act on bone marrow osteoprogenitor cells and stimulate ovary development before influencing bone mass in pre-pubertal piglets. Journal of Cellular Physiology, 2007, 212, 51-59.	2.0	7
40	Derivatization-free LC-MS/MS method for estrogen quantification in mouse brain highlights a local metabolic regulation after oral versus subcutaneous administration. Analytical and Bioanalytical Chemistry, 2017, 409, 5279-5289.	1.9	7
41	The Synthetic and Biological Aspects of Prenylation as the Versatile Tool for EstrogenicÂActivity Modulation. ChemistrySelect, 2017, 2, 6577-6603.	0.7	5
42	Naringin at a nutritional dose modulates expression of genes related to lipid metabolism and inflammation in liver of mice fed a high-fat diet. Nutrition and Aging (Amsterdam, Netherlands), 2012, 1, 113-123.	0.3	4
43	Endocrine Disruption in the Siberian Sturgeon Acipenser baerii Fed with a Soy-Containing Diet. , 2018, , 97-124.		3
44	Plant Proteins from Legumes. Reference Series in Phytochemistry, 2018, , 1-43.	0.2	3
45	Design and validation of a novel immunological test for enterolactone. Talanta, 2014, 119, 116-124.	2.9	2
46	Natural Estrogenic Substances, Origins, and Effects. Reference Series in Phytochemistry, 2018, , 1-70.	0.2	1
47	Natural Estrogenic Substances, Origins, and Effects. Reference Series in Phytochemistry, 2019, , 1157-1224.	0.2	1
48	When dietary supplements meet metabolomics: A fast-evolving field—A follow-up of ABR volume 67: Metabolomics coming of age with its technological diversity. Advances in Botanical Research, 2021, , 329-354.	0.5	0