List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8328232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	African Swine Fever: Prevalence, Farm Characteristics, Farmer's Insight and Attitude toward Reporting of African Swine Fever Cases in the Northwest, West, Littoral and Southwest Regions of Cameroon. Agriculture (Switzerland), 2022, 12, 44.	1.4	2
2	Risk Factor Assessment, Sero-Prevalence, and Genotyping of the Virus That Causes Foot-and-Mouth Disease on Commercial Farms in Ethiopia from October 2018 to February 2020. Agriculture (Switzerland), 2022, 12, 49.	1.4	7
3	Temporal and Spatial Patterns and a Space–Time Cluster Analysis of Foot-and-Mouth Disease Outbreaks in Ethiopia from 2010 to 2019. Viruses, 2022, 14, 1558.	1.5	4
4	qDNase assay: A quantitative method for real-time assessment of DNase activity on coated surfaces. Biochemical and Biophysical Research Communications, 2021, 534, 1003-1006.	1.0	2
5	Genome Sequences and Phylogeny of Two Duck Hepatitis B Viruses. Microbiology Resource Announcements, 2021, 10, .	0.3	1
6	African Swine Fever in Cameroon: A Review. Pathogens, 2021, 10, 421.	1.2	9
7	Seroprevalence of Bovine Viral Diarrhea Virus in Local Borana Cattle Breed and Camels (Camelus) Tj ETQq1 1 0.7	784314 rg 0.4	BT /Overlock
8	Evaluation of Postmortem Inspection Procedures to Diagnose Bovine Tuberculosis at Debre Birhan Municipal Abattoir. Animals, 2021, 11, 2620.	1.0	6
9	Advanced engineering of third-generation lysins and formulation strategies for clinical applications. Critical Reviews in Microbiology, 2020, 46, 548-564.	2.7	41
10	The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit. Viruses, 2020, 12, 976.	1.5	11
11	Deciphering the Role of Bovine Viral Diarrhea Virus Non-Structural NS4B Protein in Viral Pathogenesis. Veterinary Sciences, 2020, 7, 169.	0.6	2
12	Construction of Antibody Phage Libraries and Their Application in Veterinary Immunovirology. Antibodies, 2020, 9, 21.	1.2	12
13	Quinolinecarboxamides Inhibit the Replication of the Bovine Viral Diarrhea Virus by Targeting a Hot Spot for the Inhibition of Pestivirus Replication in the RNA-Dependent RNA Polymerase. Molecules, 2020, 25, 1283.	1.7	8
14	Development of sound-based poultry health monitoring tool for automated sneeze detection. Computers and Electronics in Agriculture, 2019, 162, 573-581.	3.7	48
15	Rational design of antiviral drug combinations based on equipotency using HCV subgenomic replicon as an in vitro model. Antiviral Research, 2018, 149, 150-153.	1.9	0
16	HCV-induced EGFR-ERK signaling promotes a pro-inflammatory and pro-angiogenic signature contributing to liver cancer pathogenesis. Biochemical Pharmacology, 2018, 155, 305-315.	2.0	25
17	3-(imidazo[1,2- a :5,4- b â€2]dipyridin-2-yl)aniline inhibits pestivirus replication by targeting a hot spot drug binding pocket in the RNA-dependent RNA polymerase. Antiviral Research, 2016, 129, 99-103.	1.9	8
18	Stem cell-derived hepatocytes: A novel model for hepatitis E virus replication. Journal of Hepatology, 2016, 64, 565-573.	1.8	51

#	Article	lF	CITATIONS
19	Assessment of the activity of directly acting antivirals and other products against different genotypes of hepatitis C virus prevalent in resource-poor countries. Antiviral Research, 2016, 125, 43-45.	1.9	2
20	Bicyclic and Tricyclic "Expanded―Nucleobase Analogues of Sofosbuvir: New Scaffolds for Hepatitis C Therapies. ACS Infectious Diseases, 2015, 1, 357-366.	1.8	12
21	Linear and branched alkyl-esters and amides of gallic acid and other (mono-, di- and tri-) hydroxy benzoyl derivatives as promising anti-HCV inhibitors. European Journal of Medicinal Chemistry, 2015, 92, 656-671.	2.6	36
22	In vitro combinations containing Tegobuvir are highly efficient in curing cells from HCV replicon and in delaying/preventing the development of drug resistance. Antiviral Research, 2015, 120, 112-121.	1.9	5
23	Functional elucidation of antibacterial phage ORFans targeting <i>Pseudomonas aeruginosa</i> . Cellular Microbiology, 2014, 16, 1822-1835.	1.1	47
24	Substituted 2,6-bis(benzimidazol-2-yl)pyridines: A novel chemical class of pestivirus inhibitors that targets a hot spot for inhibition of pestivirus replication in the RNA-dependent RNA polymerase. Antiviral Research, 2014, 106, 71-79.	1.9	20
25	New Pyrazolobenzothiazine Derivatives as Hepatitis C Virus NS5B Polymerase Palm Site I Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 3247-3262.	2.9	35
26	The Versatile Nature of the 6-Aminoquinolone Scaffold: Identification of Submicromolar Hepatitis C Virus NS5B Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 1952-1963.	2.9	43
27	Erratum to "Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus―[J Hepatol 2012;57:246–251]. Journal of Hepatology, 2013, 58, 199-200.	1.8	0
28	Structure-Based Discovery of Pyrazolobenzothiazine Derivatives As Inhibitors of Hepatitis C Virus Replication. Journal of Medicinal Chemistry, 2013, 56, 2270-2282.	2.9	40
29	3-Biphenylimidazo[1,2-a]pyridines or [1,2-b]pyridazines and analogues, novel Flaviviridae inhibitors. European Journal of Medicinal Chemistry, 2013, 64, 448-463.	2.6	42
30	A Multifaceted Study of Pseudomonas aeruginosa Shutdown by Virulent Podovirus LUZ19. MBio, 2013, 4, e00061-13.	1.8	68
31	Artemisinin Analogues as Potent Inhibitors of In Vitro Hepatitis C Virus Replication. PLoS ONE, 2013, 8, e81783.	1.1	51
32	Angiogenic Activity of Hepatitis B and C Viruses. Antiviral Chemistry and Chemotherapy, 2012, 22, 159-170.	0.3	31
33	124 HEPATOCYTES DERIVED FROM HUMAN PLURIPOTENT STEM CELLS PERMIT COMPLETE REPLICATION OF THE HEPATITIS C VIRUS. Journal of Hepatology, 2012, 56, S54-S55.	1.8	0
34	Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus. Journal of Hepatology, 2012, 57, 246-251.	1.8	90
35	The role of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate during viral replication. Biochemical Pharmacology, 2012, 84, 1400-1408.	2.0	61
36	Ribavirin for the treatment of chronic hepatitis C virus infection: a review of the proposed mechanisms of action. Current Opinion in Virology, 2011, 1, 590-598.	2.6	101

#	Article	IF	CITATIONS
37	Mechanistic Characterization of CS-9190 (Tegobuvir), a Novel Nonnucleoside Inhibitor of Hepatitis C Virus NS5B Polymerase. Antimicrobial Agents and Chemotherapy, 2011, 55, 4196-4203.	1.4	88
38	Preclinical Characterization of Naturally Occurring Polyketide Cyclophilin Inhibitors from the Sanglifehrin Family. Antimicrobial Agents and Chemotherapy, 2011, 55, 1975-1981.	1.4	53
39	Inhibition of hepatitis C virus replication by semi-synthetic derivatives of glycopeptide antibiotics. Journal of Antimicrobial Chemotherapy, 2011, 66, 1287-1294.	1.3	17
40	Synthesis and antiviral activity of an imidazo[1,2-a]pyrrolo[2,3-c]pyridine series against the bovine viral diarrhea virus. European Journal of Medicinal Chemistry, 2010, 45, 2044-2047.	2.6	61
41	Highly potent and selective inhibition of bovine viral diarrhea virus replication by γ-carboline derivatives. Antiviral Research, 2010, 88, 263-268.	1.9	22
42	Short and efficient access to imidazo[1,2-a]pyrrolo[3,2-c]pyridine derivatives. Tetrahedron Letters, 2010, 51, 6082-6085.	0.7	4
43	DEB025 (Alisporivir) Inhibits Hepatitis C Virus Replication by Preventing a Cyclophilin A Induced Cis-Trans Isomerisation in Domain II of NS5A. PLoS ONE, 2010, 5, e13687.	1.1	151
44	Proof of concept for the reduction of classical swine fever infection in pigs by a novel viral polymerase inhibitor. Journal of General Virology, 2009, 90, 1335-1342.	1.3	24
45	Debio 025, a Cyclophilin Binding Molecule, Is Highly Efficient in Clearing Hepatitis C Virus (HCV) Replicon-Containing Cells When Used Alone or in Combination with Specifically Targeted Antiviral Therapy for HCV (STAT-C) Inhibitors. Antimicrobial Agents and Chemotherapy, 2009, 53, 967-976.	1.4	121
46	The reduction of CSFV transmission to untreated pigs by the pestivirus inhibitor BPIP: A proof of concept. Veterinary Microbiology, 2009, 139, 365-368.	0.8	19
47	A pyrazolotriazolopyrimidinamine inhibitor of bovine viral diarrhea virus replication that targets the viral RNA-dependent RNA polymerase. Antiviral Research, 2009, 82, 141-147.	1.9	26
48	Statins potentiate the <i>in vitro</i> anti-hepatitis C virus activity of selective hepatitis C virus inhibitors and delay or prevent resistance development. Hepatology, 2009, 50, 6-16.	3.6	104
49	Substituted imidazopyridines as potent inhibitors of HCV replication. Journal of Hepatology, 2009, 50, 999-1009.	1.8	44
50	Inhibition of Subgenomic Hepatitis C Virus RNA Replication by Acridone Derivatives: Identification of an NS3 Helicase Inhibitor. Journal of Medicinal Chemistry, 2009, 52, 3354-3365.	2.9	54
51	Comparative In Vitro Anti-Hepatitis C Virus Activities of a Selected Series of Polymerase, Protease, and Helicase Inhibitors. Antimicrobial Agents and Chemotherapy, 2008, 52, 3433-3437.	1.4	43
52	Imidazo[4,5-c]pyridines inhibit the in vitro replication of the classical swine fever virus and target the viral polymerase. Antiviral Research, 2008, 77, 114-119.	1.9	26
53	The Imidazopyrrolopyridine Analogue AG110 Is a Novel, Highly Selective Inhibitor of Pestiviruses That Targets the Viral RNA-Dependent RNA Polymerase at a Hot Spot for Inhibition of Viral Replication. Journal of Virology, 2007, 81, 11046-11053.	1.5	43
54	Antiviral 2,5-disubstituted imidazo[4,5-c]pyridines: From anti-pestivirus to anti-hepatitis C virus activity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 390-393.	1.0	71

#	ARTICLE	IF	CITATIONS
55	Antiviral 2,5-disubstituted imidazo[4,5-c]pyridines: Further optimization of anti-hepatitis C virus activity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5111-5114.	1.0	23
56	Synthesis and Anti-BVDV Activity of Acridones As New Potential Antiviral Agents1. Journal of Medicinal Chemistry, 2006, 49, 2621-2627.	2.9	71
57	Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin. Biochemical and Biophysical Research Communications, 2006, 348, 139-144.	1.0	64
58	Synthesis and primary antiviral activity evaluation of 3-hydrazono-5-nitro-2-indolinone derivatives. Arkivoc, 2006, 2006, 109-118.	0.3	21
59	Substituted 5-benzyl-2-phenyl-5H-imidazo[4,5-c]pyridines: A new class of pestivirus inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5345-5349.	1.0	28
60	A Novel, Highly Selective Inhibitor of Pestivirus Replication That Targets the Viral RNA-Dependent RNA Polymerase. Journal of Virology, 2006, 80, 149-160.	1.5	78
61	The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replicationin vitro. Hepatology, 2006, 43, 761-770.	3.6	272
62	Ribavirin Antagonizes the In Vitro Anti-Hepatitis C Virus Activity of 2′- C -Methylcytidine, the Active Component of Valopicitabine. Antimicrobial Agents and Chemotherapy, 2006, 50, 3444-3446.	1.4	56
63	Exchanging the Yellow Fever Virus Envelope Proteins with Modoc Virus prM and E Proteins Results in a Chimeric Virus That Is Neuroinvasive in SCID Mice. Journal of Virology, 2004, 78, 7418-7426.	1.5	25
64	Impact of Direct Virus-Induced Neuronal Dysfunction and Immunological Damage on the Progression of Flavivirus (Modoc) Encephalitis in a Murine Model. Journal of NeuroVirology, 2003, 9, 69-78.	1.0	16
65	Interferons, Interferon Inducers, and Interferon-Ribavirin in Treatment of Flavivirus-Induced Encephalitis in Mice. Antimicrobial Agents and Chemotherapy, 2003, 47, 777-782.	1.4	55
66	Acute Encephalitis, a Poliomyelitisâ€like Syndrome and Neurological Sequelae in a Hamster Model for Flavivirus Infections. Brain Pathology, 2003, 13, 279-290.	2.1	24
67	Infection of SCID mice with Montana Myotis leukoencephalitis virus as a model for flavivirus encephalitis. Journal of General Virology, 2002, 83, 1887-1896.	1.3	26