Hiroyuki Tateno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8327685/publications.pdf

Version: 2024-02-01

29	910	14	29
papers	citations	h-index	g-index
30	30	30	787
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Unraveling the active sites of Cs-promoted Ru/ \hat{I}^3 -Al2O3 catalysts for ammonia synthesis. Applied Catalysis B: Environmental, 2022, 310, 121269.	10.8	12
2	Photoelectrochemical Oxidation of Glycerol to Dihydroxyacetone Over an Acid-Resistant Ta:BiVO ₄ Photoanode. ACS Sustainable Chemistry and Engineering, 2022, 10, 7586-7594.	3.2	24
3	Acid-Resistant BiVO ₄ Photoanodes: Insolubility Control by Solvents and Weak W Diffusion in the Lattice. ACS Applied Materials & Interfaces, 2021, 13, 12079-12090.	4.0	10
4	NaBr-Assisted Photoelectrochemical and Photochemical Integrated Process for Isomerization of Maleate Esters to Fumarate Esters. ACS Sustainable Chemistry and Engineering, 2021, 9, 6886-6893.	3.2	5
5	Effect of Pd Precursor Salts on the Chemical State, Particle Size, and Performance of Activated Carbon-Supported Pd Catalysts for the Selective Hydrogenation of Palm Biodiesel. International Journal of Molecular Sciences, 2021, 22, 1256.	1.8	5
6	Solar-to-Pharmaceutical Raw Material Production: Photoelectrochemical Naphthoquinone Formation Using Stabilized BiVO ₄ Photoanodes in Acid Media. ACS Applied Materials & Interfaces, 2021, 13, 57132-57141.	4.0	5
7	Diffusion controlled porous WO ₃ thin film photoanodes for efficient solar-driven photoelectrochemical permanganic acid production. Sustainable Energy and Fuels, 2019, 3, 2380-2390.	2.5	5
8	PINO/NHPI-mediated selective oxidation of cycloalkenes to cycloalkenones <i>via</i> a photo-electrochemical method. Chemical Communications, 2019, 55, 9339-9342.	2.2	20
9	Solar-light-driven non-bias photoelectrolysis for bleach production from sea water and atmospheric oxygen. Sustainable Energy and Fuels, 2019, 3, 3441-3447.	2.5	7
10	Electrooxidative Copolymerization of 3,4-Ethylenedioxithiophene and Benzene from a Mixture of Each Monomer. Bulletin of the Chemical Society of Japan, 2018, 91, 141-146.	2.0	1
11	Applications of Flow Microreactors in Electrosynthetic Processes. Chemical Reviews, 2018, 118, 4541-4572.	23.0	283
12	Sustainable chromic acid oxidation: solar-driven recycling of hexavalent chromium ions for quinone production by WO ₃ nanosponge photoanodes. Journal of Materials Chemistry A, 2018, 6, 110-117.	5.2	14
13	Photoâ€Electrochemical Câ^³H Bond Activation of Cyclohexane Using a WO ₃ Photoanode and Visible Light. Angewandte Chemie, 2018, 130, 11408-11411.	1.6	22
14	Photoâ€Electrochemical Câ^'H Bond Activation of Cyclohexane Using a WO ₃ Photoanode and Visible Light. Angewandte Chemie - International Edition, 2018, 57, 11238-11241.	7.2	95
15	Photoelectrochemical dimethoxylation of furan via a bromide redox mediator using a BiVO ₄ /WO ₃ photoanode. Chemical Communications, 2017, 53, 4378-4381.	2.2	63
16	Photoelectrochemical Oxidation of Benzylic Alcohol Derivatives on BiVO ₄ /WO ₃ under Visible Light Irradiation. ChemElectroChem, 2017, 4, 3283-3287.	1.7	44
17	Synthesis and molecular weight control of poly(3-hexylthiophene) using electrochemical polymerization in a flow microreactor. Reaction Chemistry and Engineering, 2017, 2, 642-645.	1.9	14
18	Green synthesis of \hat{l}_{\pm} -amino acids by electrochemical carboxylation of imines in a flow microreactor. Reaction Chemistry and Engineering, 2017, 2, 871-875.	1.9	43

#	Article	lF	CITATIONS
19	Cathodic Aromatic C,C Cross-Coupling Reaction via Single Electron Transfer Pathway. Molecules, 2017, 22, 413.	1.7	6
20	Electrocatalytic Hydrogenation of <i>o</i> -Xylene in a PEM Reactor as a Study of a Model Reaction for Hydrogen Storage. Chemistry Letters, 2016, 45, 1437-1439.	0.7	13
21	Electrochemical Polymerization on Porous Electrodes in Neat and Highly Concentrated Monomer Solutions. Chemistry Letters, 2016, 45, 1271-1273.	0.7	2
22	Electrocatalytic Hydrogenation of Toluene Using a Proton Exchange Membrane Reactor. Bulletin of the Chemical Society of Japan, 2016, 89, 1178-1183.	2.0	44
23	In Situ Generation of Trichloromethyl Anion and Efficient Reaction with Benzaldehyde in an Electrochemical Flow Microreactor. Chemistry Letters, 2016, 45, 816-818.	0.7	12
24	Development of a novel electrochemical carboxylation system using a microreactor. RSC Advances, 2015, 5, 98721-98723.	1.7	47
25	Electrochemical fixation of CO2 to organohalides in room-temperature ionic liquids under supercritical CO2. Electrochimica Acta, 2015, 161, 212-218.	2.6	34
26	Continuous in situ electrogenaration of a 2-pyrrolidone anion in a microreactor: application to highly efficient monoalkylation of methyl phenylacetate. RSC Advances, 2015, 5, 96851-96854.	1.7	14
27	An anodic aromatic C,C cross-coupling reaction using parallel laminar flow mode in a flow microreactor. Chemical Communications, 2015, 51, 4891-4894.	2.2	53
28	Anodic Alkoxylation of Lactams Followed by Reactions with Carbon Nucleophiles in a One-Pot Manner Using HFIP as a Solvent. Electrochemistry, 2013, 81, 353-355.	0.6	8
29	An Electrolytic System Based on the Acid-Base Reaction between Solid-Supported Acids and Water. Electrochemistry, 2013, 81, 371-373.	0.6	5