Christoph Borchers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8327434/publications.pdf

Version: 2024-02-01

332 papers

20,357 citations

70 h-index

126 g-index

344 all docs

344 docs citations

times ranked

344

25889 citing authors

#	Article	IF	CITATIONS
1	Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006, 439, 811-816.	13.7	1,846
2	Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma. Nature Biotechnology, 2009, 27, 633-641.	9.4	958
3	Purification and Functional Characterization of a Histone H3-Lysine 4-Specific Methyltransferase. Molecular Cell, 2001, 8, 1207-1217.	4.5	472
4	Multiple Reaction Monitoring-based, Multiplexed, Absolute Quantitation of 45 Proteins in Human Plasma. Molecular and Cellular Proteomics, 2009, 8, 1860-1877.	2.5	468
5	Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nature Methods, 2019, 16, 595-602.	9.0	452
6	JNK phosphorylates paxillin and regulates cell migration. Nature, 2003, 424, 219-223.	13.7	442
7	Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases. Nature Cell Biology, 2003, 5, 1001-1007.	4.6	390
8	An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta, 2015, 854, 86-94.	2.6	380
9	Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes and Development, 2003, 17, 654-663.	2.7	363
10	Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–Metabolites in Frozen Human Plasma. Journal of Lipid Research, 2017, 58, 2275-2288.	2.0	312
11	A Quantitative Study of the Effects of Chaotropic Agents, Surfactants, and Solvents on the Digestion Efficiency of Human Plasma Proteins by Trypsin. Journal of Proteome Research, 2010, 9, 5422-5437.	1.8	301
12	Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nature Medicine, 2012, 18, 774-782.	15.2	278
13	Architecture of the RNA polymerase II–Mediator core initiation complex. Nature, 2015, 518, 376-380.	13.7	259
14	Effect of Antibiotic Treatment on the Intestinal Metabolome. Antimicrobial Agents and Chemotherapy, 2011, 55, 1494-1503.	1.4	258
15	Current trends in quantitative proteomics. Journal of Mass Spectrometry, 2009, 44, 1637-1660.	0.7	219
16	<scp>MRM</scp> â€based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma. Proteomics, 2012, 12, 1222-1243.	1.3	191
17	A Human Proteome Detection and Quantitation Project. Molecular and Cellular Proteomics, 2009, 8, 883-886.	2.5	186
18	Mass spectrometry based biomarker discovery, verification, and validation â€" Quality assurance and control of protein biomarker assays. Molecular Oncology, 2014, 8, 840-858.	2.1	178

#	Article	IF	CITATIONS
19	Hydrogen/Deuterium Exchange Mass Spectrometry with Top-Down Electron Capture Dissociation for Characterizing Structural Transitions of a 17 kDa Protein. Journal of the American Chemical Society, 2009, 131, 12801-12808.	6.6	174
20	Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrometry Reviews, 2010, 29, 862-876.	2.8	172
21	Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nature Communications, 2015, 6, 7806.	5.8	172
22	Reduced Insulin Production Relieves Endoplasmic Reticulum Stress and Induces \hat{l}^2 Cell Proliferation. Cell Metabolism, 2016, 23, 179-193.	7.2	160
23	Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma. Molecular and Cellular Proteomics, 2015, 14, 2357-2374.	2.5	153
24	HIF1A Reduces Acute Lung Injury by Optimizing Carbohydrate Metabolism in the Alveolar Epithelium. PLoS Biology, 2013, 11, e1001665.	2.6	138
25	Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics, 2008, 4, 128-140.	1.4	136
26	SISCAPA Peptide Enrichment on Magnetic Beads Using an In-line Bead Trap Device. Molecular and Cellular Proteomics, 2009, 8, 995-1005.	2.5	134
27	Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers. Journal of Proteomics, 2012, 75, 3529-3545.	1.2	134
28	Metabolic Profiling of Bile Acids in Human and Mouse Blood by LC–MS/MS in Combination with Phospholipid-Depletion Solid-Phase Extraction. Analytical Chemistry, 2015, 87, 1127-1136.	3.2	134
29	Molecular Characterization of Surface Topology in Protein Tertiary Structures by Amino-Acylation and Mass Spectrometric Peptide Mapping. Bioconjugate Chemistry, 1994, 5, 583-590.	1.8	127
30	Regulation of the Cytoplasmic Quality Control Protein Degradation Pathway by BAG2. Journal of Biological Chemistry, 2005, 280, 38673-38681.	1.6	123
31	Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 917-926.	1.1	123
32	Direct MALDI-MS/MS of Phosphopeptides Affinity-Bound to Immobilized Metal Ion Affinity Chromatography Beads. Analytical Chemistry, 2002, 74, 3429-3433.	3.2	118
33	PeptidePicker: A scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments. Journal of Proteomics, 2014, 106, 151-161.	1.2	117
34	An integrated genomic, proteomic and biochemical analysis of (+)â€3 arene biosynthesis in Sitka spruce (<i>Picea sitchensis</i>) genotypes that are resistant or susceptible to white pine weevil. Plant Journal, 2011, 65, 936-948.	2.8	116
35	An Isotopically Coded CID-cleavable Biotinylated Cross-linker for Structural Proteomics. Molecular and Cellular Proteomics, 2011, 10, S1-S8.	2.5	113
36	Electron Capture Dissociation of Electrosprayed Protein Ions for Spatially Resolved Hydrogen Exchange Measurements. Journal of the American Chemical Society, 2008, 130, 11574-11575.	6.6	111

#	Article	IF	Citations
37	Defects in myosin VB are associated with a spectrum of previously undiagnosed low γâ€glutamyltransferase cholestasis. Hepatology, 2017, 65, 1655-1669.	3.6	107
38	Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging. Current Opinion in Biotechnology, 2017, 43, 62-69.	3.3	107
39	Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multiâ€level study of methyl jasmonateâ€treated Norway spruce (⟨i⟩Picea abies⟨/i⟩). Plant Journal, 2009, 60, 1015-1030.	2.8	106
40	Impact of $\langle i \rangle$ Salmonella $\langle i \rangle$ Infection on Host Hormone Metabolism Revealed by Metabolomics. Infection and Immunity, 2011, 79, 1759-1769.	1.0	104
41	Chemical fingerprinting of naphthenic acids and oil sands process watersâ€"A review of analytical methods for environmental samples. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 1145-1163.	0.9	103
42	Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3â€nitrophenylhydrazones by <scp>UPLC </scp> / <scp>ESI </scp> † <scp>MS </scp> . Electrophoresis, 2013, 34, 2891-2900.	1.3	100
43	Design, Implementation and Multisite Evaluation of a System Suitability Protocol for the Quantitative Assessment of Instrument Performance in Liquid Chromatography-Multiple Reaction Monitoring-MS (LC-MRM-MS). Molecular and Cellular Proteomics, 2013, 12, 2623-2639.	2.5	100
44	First Community-Wide, Comparative Cross-Linking Mass Spectrometry Study. Analytical Chemistry, 2019, 91, 6953-6961.	3.2	100
45	The dimerization motif of cytosolic sulfotransferases. FEBS Letters, 2001, 490, 39-43.	1.3	99
46	Discovery of a small-molecule HIV-1 integrase inhibitor-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10080-10085.	3.3	98
47	Mass-spectrometry-based clinical proteomics – a review and prospective. Analyst, The, 2010, 135, 1830.	1.7	98
48	A Systems-Biology Analysis of Feedback Inhibition in the Sho1 Osmotic-Stress-Response Pathway. Current Biology, 2007, 17, 659-667.	1.8	97
49	Isotopically Coded Cleavable Cross-linker for Studying Protein-Protein Interaction and Protein Complexes. Molecular and Cellular Proteomics, 2005, 4, 1167-1179.	2.5	94
50	The first pilot project of the consortium for topâ€down proteomics: <scp>A</scp> status report. Proteomics, 2014, 14, 1130-1140.	1.3	90
51	Mass-Spectrometric Detection of SARS-CoV-2 Virus in Scrapings of the Epithelium of the Nasopharynx of Infected Patients via Nucleocapsid N Protein. Journal of Proteome Research, 2020, 19, 4393-4397.	1.8	87
52	Phosphorylation of Stem-Loop Binding Protein (SLBP) on Two Threonines Triggers Degradation of SLBP, the Sole Cell Cycle-Regulated Factor Required for Regulation of Histone mRNA Processing, at the End of S Phase. Molecular and Cellular Biology, 2003, 23, 1590-1601.	1,1	85
53	Proteomic Signatures in Plasma during Early Acute Renal Allograft Rejection. Molecular and Cellular Proteomics, 2010, 9, 1954-1967.	2.5	85
54	Structure of EspB from the ESX-1 Type VII Secretion System and Insights into its Export Mechanism. Structure, 2015, 23, 571-583.	1.6	85

#	Article	IF	CITATIONS
55	Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR. Journal of Clinical Investigation, 2007, 117, 364-374.	3.9	85
56	Comparison of standard- and nano-flow liquid chromatography platforms for MRM-based quantitation of putative plasma biomarker proteins. Analytical and Bioanalytical Chemistry, 2012, 404, 1089-1101.	1.9	83
57	<scp><i>M</i></scp> <i>ycobacterium leprae</i> intracellular survival relies on cholesterol accumulation in infected macrophages: a potential target for new drugs for leprosy treatment. Cellular Microbiology, 2014, 16, 797-815.	1.1	83
58	Targeted and Untargeted Proteomics Approaches in Biomarker Development. Proteomics, 2020, 20, e1900029.	1.3	83
59	Multiplexed Quantitation of Endogenous Proteins in Dried Blood Spots by Multiple Reaction Monitoring - Mass Spectrometry. Molecular and Cellular Proteomics, 2013, 12, 781-791.	2.5	81
60	Multiple Reaction Monitoring Enables Precise Quantification of 97 Proteins in Dried Blood Spots. Molecular and Cellular Proteomics, 2015, 14, 3094-3104.	2.5	81
61	Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations. Science Advances, 2017, 3, e1700479.	4.7	80
62	Identification of In-Gel Digested Proteins by Complementary Peptide Mass Fingerprinting and Tandem Mass Spectrometry Data Obtained on an Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometer. Analytical Chemistry, 2000, 72, 1163-1168.	3.2	78
63	Phosphorylation of paxillin by p38MAPK is involved in the neurite extension of PC-12 cells. Journal of Cell Biology, 2004, 164, 593-602.	2.3	78
64	Characterizing Short-Lived Protein Folding Intermediates by Top-Down Hydrogen Exchange Mass Spectrometry. Analytical Chemistry, 2010, 82, 8591-8597.	3.2	78
65	Preliminary comparison of precursor scans and liquid chromatography–tandem mass spectrometry on a hybrid quadrupole time-of-flight mass spectrometer. Journal of Chromatography A, 1999, 854, 119-130.	1.8	77
66	An immunoaffinity tandem mass spectrometry (iMALDI) assay for detection of Francisella tularensis. Analytica Chimica Acta, 2007, 605, 70-79.	2.6	75
67	Recommendations from the 2008 International Summit on Proteomics Data Release and Sharing Policy: The Amsterdam Principles. Journal of Proteome Research, 2009, 8, 3689-3692.	1.8	75
68	The Tetratricopeptide Repeat Domain and a C-terminal Region Control the Activity of Ser/Thr Protein Phosphatase 5. Journal of Biological Chemistry, 1999, 274, 23666-23672.	1.6	73
69	Identification of two small regulatory RNAs linked to virulence in <i>Brucella abortus</i> 2308. Molecular Microbiology, 2012, 85, 345-360.	1.2	73
70	Hydroxyflavones as a New Family of Matrices for MALDI Tissue Imaging. Analytical Chemistry, 2013, 85, 7566-7573.	3.2	72
71	Current trends in quantitative proteomics – an update. Journal of Mass Spectrometry, 2017, 52, 319-341.	0.7	70
72	Towards the development of an immuno MALDI (iMALDI) mass spectrometry assay for the diagnosis of hypertension. Journal of the American Society for Mass Spectrometry, 2010, 21, 1680-1686.	1.2	69

#	Article	IF	Citations
73	Detecting post-translational modification signatures as potential biomarkers in clinical mass spectrometry. Expert Review of Proteomics, 2018, 15, 515-535.	1.3	69
74	Development of MRM-Based Assays for the Absolute Quantitation of Plasma Proteins. Methods in Molecular Biology, 2013, 1023, 53-82.	0.4	68
75	Assay Development for the Determination of Phosphorylation Stoichiometry Using Multiple Reaction Monitoring Methods with and without Phosphatase Treatment: Application to Breast Cancer Signaling Pathways. Analytical Chemistry, 2010, 82, 5610-5620.	3.2	66
76	Standardized Protocols for Quality Control of MRM-based Plasma Proteomic Workflows. Journal of Proteome Research, 2013, 12, 222-233.	1.8	66
77	Multiplexed MRM-based quantitation of candidate cancer biomarker proteins in undepleted and non-enriched human plasma. Proteomics, 2013, 13, 2202-2215.	1.3	66
78	Analysis of Disease-Associated Protein Expression Using Quantitative Proteomics—Fibulin-5 Is Expressed in Association with Hepatic Fibrosis. Journal of Proteome Research, 2015, 14, 2278-2286.	1.8	66
79	Photoaffinity labeling combined with mass spectrometric approaches as a tool for structural proteomics. Expert Review of Proteomics, 2006, 3, 399-408.	1.3	65
80	Structure and Dynamics of Small Soluble Aβ(1–40) Oligomers Studied by Top-Down Hydrogen Exchange Mass Spectrometry. Biochemistry, 2012, 51, 3694-3703.	1.2	64
81	A Unique Morphological Phenotype in Chemoresistant Triple-Negative Breast Cancer Reveals Metabolic Reprogramming and PLIN4 Expression as a Molecular Vulnerability. Molecular Cancer Research, 2019, 17, 2492-2507.	1.5	63
82	Conformer-Specific Hydrogen Exchange Analysis of Aβ(1–42) Oligomers by Top-Down Electron Capture Dissociation Mass Spectrometry. Analytical Chemistry, 2011, 83, 5386-5393.	3.2	62
83	Mass spectrometry-based technologies for high-throughput metabolomics. Bioanalysis, 2009, 1, 1665-1684.	0.6	60
84	MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum. Expert Review of Proteomics, 2014, 11, 137-148.	1.3	60
85	MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain. Nucleic Acids Research, 2012, 40, 2884-2897.	6.5	57
86	The Effect of Pre-Analytical Variability on the Measurement of MRM-MS-Based Mid- to High-Abundance Plasma Protein Biomarkers and a Panel of Cytokines. PLoS ONE, 2012, 7, e38290.	1.1	57
87	Development of an immuno tandem mass spectrometry (iMALDI) assay for EGFR diagnosis. Proteomics - Clinical Applications, 2007, 1, 1651-1659.	0.8	56
88	Comprehensive Imaging of Porcine Adrenal Gland Lipids by MALDI-FTMS Using Quercetin as a Matrix. Analytical Chemistry, 2014, 86, 638-646.	3.2	56
89	BiPS, a Photocleavable, Isotopically Coded, Fluorescent Cross-linker for Structural Proteomics. Molecular and Cellular Proteomics, 2009, 8, 273-286.	2.5	55
90	ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite. BMC Bioinformatics, 2010, 11, 64.	1.2	55

#	Article	IF	CITATIONS
91	Method and platform standardization in MRM-based quantitative plasma proteomics. Journal of Proteomics, 2013, 95, 66-76.	1.2	55
92	Conformational ensemble of native $\hat{l}\pm$ -synuclein in solution as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations. PLoS Computational Biology, 2019, 15, e1006859.	1.5	55
93	Dietary patterns and ethnicity are associated with distinct plasma proteomic groups. American Journal of Clinical Nutrition, 2012, 95, 352-361.	2.2	54
94	Quest for Missing Proteins: Update 2015 on Chromosome-Centric Human Proteome Project. Journal of Proteome Research, 2015, 14, 3415-3431.	1.8	53
95	Enteric Helminths Promote Salmonella Coinfection by Altering the Intestinal Metabolome. Journal of Infectious Diseases, 2017, 215, 1245-1254.	1.9	53
96	Mnd2 and Swm1 Are Core Subunits of the Saccharomyces cerevisiae Anaphase-promoting Complex. Journal of Biological Chemistry, 2003, 278, 16698-16705.	1.6	52
97	Molecular Characterization of a Conformational Epitope of Hen Egg White Lysozyme by Differential Chemical Modification of Immune Complexes and Mass Spectrometric Peptide Mapping. Bioconjugate Chemistry, 1998, 9, 236-241.	1.8	51
98	Heterogeneous Nuclear Ribonuclear Protein U Associates with YAP and Regulates Its Co-activation of Bax Transcription. Journal of Biological Chemistry, 2004, 279, 26300-26306.	1.6	51
99	DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair. Nucleic Acids Research, 2003, 31, 2025-2034.	6.5	50
100	A comparison of MS/MSâ€based, stableâ€isotopeâ€labeled, quantitation performance on ESIâ€quadrupole TOF and MALDIâ€TOF/TOF mass spectrometers. Proteomics, 2009, 9, 3328-3340.	1.3	50
101	MeCP2-E1 isoform is a dynamically expressed, weakly DNA-bound protein with different protein and DNA interactions compared to MeCP2-E2. Epigenetics and Chromatin, 2019, 12, 63.	1.8	50
102	Comprehensive Analysis of Oil Sands Processed Water by Direct-Infusion Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry with and without Offline UHPLC Sample Prefractionation. Environmental Science & Environment	4.6	49
103	Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biology, 2015, 15, 220.	1.6	49
104	3′ End Processing of Drosophila melanogaster Histone Pre-mRNAs: Requirement for Phosphorylated Drosophila Stem-Loop Binding Protein and Coevolution of the Histone Pre-mRNA Processing System. Molecular and Cellular Biology, 2002, 22, 6648-6660.	1.1	48
105	Metabolomics: towards understanding host–microbe interactions. Future Microbiology, 2010, 5, 153-161.	1.0	48
106	Quantitation of Spatially-Localized Proteins in Tissue Samples using MALDI-MRM Imaging. Analytical Chemistry, 2012, 84, 3514-3522.	3.2	48
107	Protein unfolding as a switch from self-recognition to high-affinity client binding. Nature Communications, 2016, 7, 10357.	5.8	48
108	Super Spy variants implicate flexibility in chaperone action. ELife, 2014, 3, e01584.	2.8	48

#	Article	IF	Citations
109	Isotopically-coded short-range hetero-bifunctional photo-reactive crosslinkers for studying protein structure. Journal of Proteomics, 2015, 118, 12-20.	1.2	47
110	Combined top-down and bottom-up proteomics identifies a phosphorylation site in stem-loop-binding proteins that contributes to high-affinity RNA binding. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3094-3099.	3.3	46
111	Use of Proteinase K Nonspecific Digestion for Selective and Comprehensive Identification of Interpeptide Cross-links: Application to Prion Proteins. Molecular and Cellular Proteomics, 2012, 11, M111.013524-1-M111.013524-13.	2.5	46
112	Novel Neutrophil-Derived Proteins in Bronchoalveolar Lavage Fluid Indicate an Exaggerated Inflammatory Response in Pediatric Cystic Fibrosis Patients. Clinical Chemistry, 2007, 53, 1782-1791.	1.5	45
113	Analysis of Selected Sugars and Sugar Phosphates in Mouse Heart Tissue by Reductive Amination and Liquid Chromatography-Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2013, 85, 5965-5973.	3.2	45
114	Precise quantitation of 136 urinary proteins by LC/MRM-MS using stable isotope labeled peptides as internal standards for biomarker discovery and/or verification studies. Methods, 2015, 81, 24-33.	1.9	45
115	Characterization and Diagnostic Application of Trypanosoma cruzi Trypomastigote Excreted-Secreted Antigens Shed in Extracellular Vesicles Released from Infected Mammalian Cells. Journal of Clinical Microbiology, 2017, 55, 744-758.	1.8	45
116	Mass Spectrometry-Based Structural Proteomics. European Journal of Mass Spectrometry, 2012, 18, 251-267.	0.5	44
117	Dithranol as a MALDI Matrix for Tissue Imaging of Lipids by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2012, 84, 8391-8398.	3.2	44
118	Identification and Validation of Potential New Biomarkers for Prostate Cancer Diagnosis and Prognosis Using 2D-DIGE and MS. BioMed Research International, 2015, 2015, 1-23.	0.9	44
119	Phosphatase-Directed Phosphorylation-Site Determination: Â A Synthesis of Methods for the Detection and Identification of Phosphopeptides. Journal of Proteome Research, 2005, 4, 1628-1635.	1.8	43
120	Metabolic Signatures of Triatomine Vectors of Trypanosoma cruzi Unveiled by Metabolomics. PLoS ONE, 2013, 8, e77283.	1.1	43
121	Enhanced sensitivity and multiplexing with 2D LC/MRM-MS and labeled standards for deeper and more comprehensive protein quantitation. Journal of Proteomics, 2014, 106, 113-124.	1.2	43
122	Subzero Temperature Chromatography and Top-Down Mass Spectrometry for Protein Higher-Order Structure Characterization: Method Validation and Application to Therapeutic Antibodies. Journal of the American Chemical Society, 2014, 136, 13065-13071.	6.6	43
123	Electrospray ionization tandem mass spectrometry of model peptides reveals diagnostic fragment ions for protein ubiquitination. Rapid Communications in Mass Spectrometry, 2005, 19, 429-437.	0.7	42
124	Model of the Mediator middle module based on protein cross-linking. Nucleic Acids Research, 2013, 41, 9266-9273.	6.5	42
125	Characterization of a discontinuous epitope of the human immunodeficiency virus (HIV) core protein p24 by epitope excision and differential chemical modification followed by mass spectrometric peptide mapping analysis. Protein Science, 2000, 9, 487-496.	3.1	41
126	Metabonomics Reveals Drastic Changes in Anti-Inflammatory/Pro-Resolving Polyunsaturated Fatty Acids-Derived Lipid Mediators in Leprosy Disease. PLoS Neglected Tropical Diseases, 2013, 7, e2381.	1.3	41

#	Article	IF	CITATIONS
127	The Deubiquitinase Activity of the Salmonella Pathogenicity Island 2 Effector, SseL, Prevents Accumulation of Cellular Lipid Droplets. Infection and Immunity, 2011, 79, 4392-4400.	1.0	40
128	Multiple Reaction Monitoring (MRM). Circulation: Cardiovascular Genetics, 2012, 5, 378-378.	5.1	40
129	Comparison of Proteins in Whole Blood and Dried Blood Spot Samples by LC/MS/MS. Journal of the American Society for Mass Spectrometry, 2013, 24, 1338-1345.	1.2	40
130	Computational Biomarker Pipeline from Discovery to Clinical Implementation: Plasma Proteomic Biomarkers for Cardiac Transplantation. PLoS Computational Biology, 2013, 9, e1002963.	1.5	40
131	Multiplexed MRM with Internal Standards for Cerebrospinal Fluid Candidate Protein Biomarker Quantitation. Journal of Proteome Research, 2014, 13, 3733-3747.	1.8	40
132	Identification of Components of Protein Complexes Using a Fluorescent Photo-Cross-Linker and Mass Spectrometry. Analytical Chemistry, 2002, 74, 1939-1945.	3.2	39
133	Insight into the Structure of the "Unstructured―Tau Protein. Structure, 2019, 27, 1710-1715.e4.	1.6	39
134	Characterization of the Noncovalent Complex of Human Immunodeficiency Virus Glycoprotein 120 with Its Cellular Receptor CD4 by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Biochemistry, 1999, 38, 11734-11740.	1.2	38
135	Development of a Protein Chip:Â A MS-Based Method for Quantitation of Protein Expression and Modification Levels Using an Immunoaffinity Approach. Analytical Chemistry, 2004, 76, 4082-4092.	3.2	37
136	Absolute Quantitation of Proteins in Human Blood by Multiplexed Multiple Reaction Monitoring Mass Spectrometry. Methods in Molecular Biology, 2013, 1000, 167-189.	0.4	37
137	Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics. Trends in Biotechnology, 2017, 35, 954-970.	4.9	37
138	Matrix coating assisted by an electric field (MCAEF) for enhanced tissue imaging by MALDI-MS. Chemical Science, 2015, 6, 729-738.	3.7	36
139	Top-Down Hydrogen–Deuterium Exchange Analysis of Protein Structures Using Ultraviolet Photodissociation. Analytical Chemistry, 2018, 90, 3079-3082.	3.2	36
140	Characterization of the Dexniguldipine Binding Site in the Multidrug Resistance-Related Transport Protein P-Glycoprotein by Photoaffinity Labeling and Mass Spectrometry. Molecular Pharmacology, 2002, 61, 1366-1376.	1.0	35
141	Identification of <i>Leishmaniaâ€</i> specific protein phosphorylation sites by LCâ€ESIâ€MS/MS and comparative genomics analyses. Proteomics, 2010, 10, 3868-3883.	1.3	35
142	Pre-analytical and analytical variability in absolute quantitative MRM-based plasma proteomic studies. Bioanalysis, 2013, 5, 2837-2856.	0.6	35
143	Qualis-SIS: Automated Standard Curve Generation and Quality Assessment for Multiplexed Targeted Quantitative Proteomic Experiments with Labeled Standards. Journal of Proteome Research, 2015, 14, 1137-1146.	1.8	35
144	Metabolomic profiling of prostate cancer by matrix assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry imaging using Matrix Coating Assisted by an Electric Field (MCAEF). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 755-767.	1.1	35

#	Article	IF	CITATIONS
145	Intense Light-Mediated Circadian Cardioprotection via Transcriptional Reprogramming of the Endothelium. Cell Reports, 2019, 28, 1471-1484.e11.	2.9	35
146	Rapid and sensitive identification of epitope-containing peptides by direct matrix-assisted laser desorption/ionization tandem mass spectrometry of peptides affinity-bound to antibody beads. Journal of the American Society for Mass Spectrometry, 2003, 14, 1076-1085.	1.2	34
147	Multi-Kinase Phosphorylation of the APC/C Activator Cdh1 Revealed by Mass Spectrometry. Cell Cycle, 2004, 3, 1278-1284.	1.3	34
148	Development and evaluation of an immuno-MALDI (iMALDI) assay for angiotensin I and the diagnosis of secondary hypertension. Clinical Proteomics, 2013, 10, 20.	1.1	34
149	Topâ€down structural analysis of posttranslationally modified proteins by Fourier transform ion cyclotron resonanceâ€ <scp>MS</scp> with hydrogen/deuterium exchange and electron capture dissociation. Proteomics, 2013, 13, 974-981.	1.3	34
150	pH Biosensing by PI4P Regulates Cargo Sorting at the TGN. Developmental Cell, 2020, 52, 461-476.e4.	3.1	34
151	Improving Identification of In-organello Protein-Protein Interactions Using an Affinity-enrichable, Isotopically Coded, and Mass Spectrometry-cleavable Chemical Crosslinker. Molecular and Cellular Proteomics, 2020, 19, 624-639.	2.5	34
152	Higher-order structural interrogation of antibodies using middle-down hydrogen/deuterium exchange mass spectrometry. Chemical Science, 2016, 7, 1480-1486.	3.7	33
153	New Guidelines for Publication of Manuscripts Describing Development and Application of Targeted Mass Spectrometry Measurements of Peptides and Proteins. Molecular and Cellular Proteomics, 2017, 16, 327-328.	2.5	33
154	Metabolomics Reveals Phospholipids as Important Nutrient Sources during Salmonella Growth in Bile In Vitro and <i>In Vivo</i> . Journal of Bacteriology, 2011, 193, 4719-4725.	1.0	32
155	Inter-laboratory evaluation of instrument platforms and experimental workflows for quantitative accuracy and reproducibility assessment. EuPA Open Proteomics, 2015, 8, 6-15.	2.5	32
156	Chaperone activation and client binding of a 2-cysteine peroxiredoxin. Nature Communications, 2019, 10, 659.	5.8	32
157	Use of a Combination of Isotopically Coded Cross-Linkers and Isotopically Coded N-Terminal Modification Reagents for Selective Identification of Inter-peptide Crosslinks. Analytical Chemistry, 2010, 82, 817-823.	3.2	31
158	A standardized kit for automated quantitative assessment of candidate protein biomarkers in human plasma. Bioanalysis, 2015, 7, 2991-3004.	0.6	31
159	Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy–like disease. Genetics in Medicine, 2018, 20, 1224-1235.	1.1	31
160	Inhibition of APCCdh1 Activity by Cdh1/Acm1/Bmh1 Ternary Complex Formation. Journal of Biological Chemistry, 2007, 282, 5237-5248.	1.6	30
161	Freeâ€flow electrophoresis for topâ€down proteomics by Fourier transform ion cyclotron resonance mass spectrometry. Proteomics, 2008, 8, 2798-2808.	1.3	30
162	Quantitative iTRAQ proteome and comparative transcriptome analysis of elicitorâ€induced Norway spruce (⟨b⟩⟨i⟩Picea abies⟨ i⟩⟨ b⟩) cells reveals elements of calcium signaling in the early conifer defense response. Proteomics, 2009, 9, 350-367.	1.3	30

#	Article	IF	CITATIONS
163	The prolyl isomerase, FKBP25, interacts with RNA-engaged nucleolin and the pre-60S ribosomal subunit. Rna, 2014, 20, 1014-1022.	1.6	30
164	A Targeted Proteomics Analysis of Cerebrospinal Fluid after Acute Human Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 2054-2068.	1.7	30
165	Immuno-Matrix-Assisted Laser Desorption/Ionization Assays for Quantifying AKT1 and AKT2 in Breast and Colorectal Cancer Cell Lines and Tumors. Analytical Chemistry, 2017, 89, 10592-10600.	3.2	30
166	Combining Fluorescence Detection and Mass Spectrometric Analysis for Comprehensive and Quantitative Analysis of Redox-Sensitive Cysteines in Native Membrane Proteins. Analytical Chemistry, 2006, 78, 7959-7966.	3.2	29
167	The multifunctional role of the pallilysinâ€associated <scp><i>T</i></scp> <i>reponema pallidum</i> protein, <scp>Tp</scp> 0750, in promoting fibrinolysis and extracellular matrix component degradation. Molecular Microbiology, 2014, 91, 618-634.	1.2	29
168	Comparative higher-order structure analysis of antibody biosimilars using combined bottom-up and top-down hydrogen-deuterium exchange mass spectrometry. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1801-1808.	1.1	29
169	Isotope-labeling derivatization with 3-nitrophenylhydrazine for LC/multiple-reaction monitoring-mass-spectrometry-based quantitation of carnitines in dried blood spots. Analytica Chimica Acta, 2018, 1037, 177-187.	2.6	29
170	Identification of binding sites for ivacaftor on the cystic fibrosis transmembrane conductance regulator. IScience, 2021, 24, 102542.	1.9	29
171	Pseudo-MS3 in a MALDI orthogonal quadrupole-time of flight mass spectrometer. Journal of the American Society for Mass Spectrometry, 2002, 13, 1034-1041.	1.2	28
172	Hydrophilic bile acids prevent liver damage caused by lack of biliary phospholipid in Mdr2 mice. Journal of Lipid Research, 2019, 60, 85-97.	2.0	28
173	Duplexed iMALDI for the detection of angiotensin I and angiotensin II. Methods, 2012, 56, 213-222.	1.9	27
174	Serum proteomics in multiple sclerosis disease progression. Journal of Proteomics, 2015, 118, 2-11.	1.2	27
175	Evaluation and Validation of Plasma Proteins Using Two Different Protein Detection Methods for Early Detection of Colorectal Cancer. Cancers, 2019, 11, 1426.	1.7	27
176	Concentration Determination of >200 Proteins in Dried Blood Spots for Biomarker Discovery and Validation. Molecular and Cellular Proteomics, 2020, 19, 540-553.	2.5	27
177	The application of multiple reaction monitoring to assess ApoA-I methionine oxidations in diabetes and cardiovascular disease. Translational Proteomics, 2014, 4-5, 18-24.	1.2	26
178	Short-Term Stabilities of 21 Amino Acids in Dried Blood Spots. Clinical Chemistry, 2018, 64, 400-402.	1.5	26
179	The Parallel Reaction Monitoring-Parallel Accumulation–Serial Fragmentation (prm-PASEF) Approach for Multiplexed Absolute Quantitation of Proteins in Human Plasma. Analytical Chemistry, 2022, 94, 2016-2022.	3.2	26
180	Accurate quantitation of standard peptides used for quantitative proteomics. Proteomics, 2009, 9, 3939-3944.	1.3	25

#	Article	IF	Citations
181	Quantitation of low molecular weight sugars by chemical derivatizationâ€liquid chromatography/multiple reaction monitoring/mass spectrometry. Electrophoresis, 2016, 37, 1851-1860.	1.3	25
182	Development and evaluation of a liquid chromatography–mass spectrometry method for rapid, accurate quantitation of malondialdehyde in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1029-1030, 205-212.	1.2	25
183	Multiplexed MRM-Based Protein Quantitation Using Two Different Stable Isotope-Labeled Peptide Isotopologues for Calibration. Journal of Proteome Research, 2017, 16, 2527-2536.	1.8	25
184	2-Methoxyestradiol Inhibits the Anaphase-Promoting Complex and Protein Translation in Human Breast Cancer Cells. Cancer Research, 2007, 67, 702-708.	0.4	24
185	Fast Comparative Structural Characterization of Intact Therapeutic Antibodies Using Hydrogen–Deuterium Exchange and Electron Transfer Dissociation. Analytical Chemistry, 2015, 87, 5884-5890.	3.2	24
186	An automated assay for the clinical measurement of plasma renin activity by immuno-MALDI (iMALDI). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 547-558.	1.1	23
187	Cardiac Ryanodine Receptor (Ryr2)-mediated Calcium Signals Specifically Promote Glucose Oxidation via Pyruvate Dehydrogenase. Journal of Biological Chemistry, 2016, 291, 23490-23505.	1.6	23
188	MRMAssayDB: an integrated resource for validated targeted proteomics assays. Bioinformatics, 2018, 34, 3566-3571.	1.8	23
189	Validation of a proteomic biomarker panel to diagnose minor-stroke and transient ischaemic attack: phase 2 of SpecTRA, a large scale translational study. Biomarkers, 2018, 23, 793-803.	0.9	23
190	Determination of the concentration range for 267 proteins from 21 lots of commercial human plasma using highly multiplexed multiple reaction monitoring mass spectrometry. Analyst, The, 2020, 145, 3634-3644.	1.7	23
191	Matrix-assisted laser desorption/ionization directed nano-electrospray ionization tandem mass spectrometric analysis for protein identification. Rapid Communications in Mass Spectrometry, 2003, 17, 1825-1834.	0.7	22
192	DXMSMS Match Program for Automated Analysis of LCâ€MS/MS Data Obtained Using Isotopically Coded CIDâ€Cleavable Crossâ€Linking Reagents. Current Protocols in Bioinformatics, 2014, 48, 8.18.1-19.	25.8	22
193	Protein expression changes caused by spaceflight as measured for 18 Russian cosmonauts. Scientific Reports, 2017, 7, 8142.	1.6	22
194	Multiplexed MRMâ€based assays for the quantitation of proteins in mouse plasma and heart tissue. Proteomics, 2017, 17, 1600097.	1.3	22
195	Molecular phenotyping of laboratory mouse strains using 500 multiple reaction monitoring mass spectrometry plasma assays. Communications Biology, 2018, 1, 78.	2.0	22
196	Increased sulfation of bile acids in mice and human subjects with sodium taurocholate cotransporting polypeptide deficiency. Journal of Biological Chemistry, 2019, 294, 11853-11862.	1.6	22
197	The intestinal microbiome potentially affects thrombin generation in human subjects. Journal of Thrombosis and Haemostasis, 2020, 18, 642-650.	1.9	22
198	Mass Spectrometry in High-Throughput Clinical Biomarker Assays: Multiple Reaction Monitoring. Topics in Current Chemistry, 2012, 336, 117-137.	4.0	21

#	Article	IF	Citations
199	Verification of a proteomic biomarker panel to diagnose minor stroke and transient ischaemic attack: phase 1 of SpecTRA, a large scale translational study. Biomarkers, 2018, 23, 392-405.	0.9	21
200	Proteomic Profiling of <i>Leishmania donovani</i> Promastigote Subcellular Organelles. Journal of Proteome Research, 2018, 17, 1194-1215.	1.8	21
201	A Surface-Focused Biotinylation Procedure Identifies the <i>Yersinia pestis</i> Catalase KatY as a Membrane-Associated but Non-Surface-Located Protein. Applied and Environmental Microbiology, 2007, 73, 5750-5759.	1.4	20
202	The novel isotopically coded short-range photo-reactive crosslinker 2,4,6-triazido-1,3,5-triazine (TATA) for studying protein structures. Journal of Proteomics, 2016, 149, 69-76.	1.2	20
203	PeptideTracker: A knowledge base for collecting and storing information on protein concentrations in biological tissues. Proteomics, 2017, 17, 1600210.	1.3	20
204	How iMALDI can improve clinical diagnostics. Analyst, The, 2018, 143, 2197-2203.	1.7	20
205	ExSTA: External Standard Addition Method for Accurate Highâ€Throughput Quantitation in Targeted Proteomics Experiments. Proteomics - Clinical Applications, 2018, 12, 1600180.	0.8	20
206	Protein Chemistry Combined with Mass Spectrometry for Protein Structure Determination. Chemical Reviews, 2022, 122, 7488-7499.	23.0	20
207	Repression of Salmonella enterica <i>phoP</i> Expression by Small Molecules from Physiological Bile. Journal of Bacteriology, 2012, 194, 2286-2296.	1.0	19
208	Topâ€down mass spectrometry and hydrogen/deuterium exchange for comprehensive structural characterization of interferons: Implications for biosimilars. Proteomics, 2014, 14, 1249-1258.	1.3	19
209	Gluten Intake Is Positively Associated with Plasma α2-Macroglobulin in Young Adults. Journal of Nutrition, 2015, 145, 1256-1262.	1.3	19
210	The use of matrix coating assisted by an electric field (MCAEF) to enhance mass spectrometric imaging of human prostate cancer biomarkers. Journal of Mass Spectrometry, 2016, 51, 86-95.	0.7	19
211	Affinity-mass spectrometric technologies for quantitative proteomics in biological fluids. TrAC - Trends in Analytical Chemistry, 2017, 90, 80-88.	5.8	19
212	An online 2D-reversed-phase – Reversed-phase chromatographic method for sensitive and robust plasma protein quantitation. Journal of Proteomics, 2017, 168, 28-36.	1.2	19
213	Differential Proteomics for Distinguishing Ischemic Stroke from Controls: a Pilot Study of the SpecTRA Project. Translational Stroke Research, 2018, 9, 590-599.	2.3	19
214	The prolyl isomerase FKBP25 regulates microtubule polymerization impacting cell cycle progression and genomic stability. Nucleic Acids Research, 2018, 46, 2459-2478.	6.5	19
215	Multiplex quantitation of 270 plasma protein markers to identify a signature for early detection of colorectal cancer. European Journal of Cancer, 2020, 127, 30-40.	1.3	19
216	COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry. PLoS ONE, 2016, 11, e0161129.	1.1	19

#	Article	IF	Citations
217	Fourier transform ion cyclotron resonance MS reveals the presence of a water molecule in an enzyme transition-state analogue complex. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15341-15345.	3.3	18
218	Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium. Biochemical and Biophysical Research Communications, 2011, 415, 263-269.	1.0	18
219	Using multiple structural proteomics approaches for the characterization of prion proteins. Journal of Proteomics, 2013, 81, 31-42.	1.2	18
220	14N15N DXMSMS Match program for the automated analysis of LC/ESI-MS/MS crosslinking data from experiments using 15N metabolically labeled proteins. Journal of Proteomics, 2014, 109, 104-110.	1.2	18
221	Multiplexed targeted proteomic assay to assess coagulation factor concentrations and thrombosis-associated cancer. Blood Advances, 2017, 1, 1080-1087.	2.5	18
222	Identification of covalent modifications in P450 2E1 by 1,2-epoxy-3-butene in vitro. Chemico-Biological Interactions, 2007, 166, 170-175.	1.7	17
223	Accurate molecular weight analysis of histones using FFE and RPâ€HPLC on monolithic capillary columns. Journal of Separation Science, 2009, 32, 2691-2698.	1.3	17
224	Peering into molecular mechanisms of action with frogSCOPE. General and Comparative Endocrinology, 2010, 168, 190-198.	0.8	17
225	The use of multiplexed MRM for the discovery of biomarkers to differentiate iron-deficiency anemia from anemia of inflammation. Journal of Proteomics, 2012, 75, 3514-3528.	1.2	17
226	Effects of TCDD upon lîºB and IKK subunits localized in microsomes by proteomics. Archives of Biochemistry and Biophysics, 2002, 406, 153-164.	1.4	16
227	Absolute quantitation of cancer-related proteins using an MS-based peptide chip. BioTechniques, 2005, 38, S7-S11.	0.8	16
228	Ten Years of Standardizing Proteomic Data: A Report on the HUPOâ€PSI Spring Workshop. Proteomics, 2012, 12, 2767-2772.	1.3	16
229	Changing the Apoptosis Pathway through Evolutionary Protein Design. Journal of Molecular Biology, 2019, 431, 825-841.	2.0	16
230	An Update on MRMAssayDB: A Comprehensive Resource for Targeted Proteomics Assays in the Community. Journal of Proteome Research, 2021, 20, 2105-2115.	1.8	16
231	Analysis of Protein Structure by Cross-Linking Combined with Mass Spectrometry. Methods in Molecular Biology, 2014, 1156, 447-463.	0.4	16
232	The basic tilted helix bundle domain of the prolyl isomerase FKBP25 is a novel double-stranded RNA binding module. Nucleic Acids Research, 2017, 45, 11989-12004.	6.5	15
233	High-Flow Multiplexed MRM-Based Analysis of Proteins in Human Plasma Without Depletion or Enrichment. Clinics in Laboratory Medicine, 2011, 31, 371-384.	0.7	14
234	Mass spectrometric analysis and mutagenesis predict involvement of multiple cysteines in redox regulation of the skeletal muscle ryanodine receptor ion channel complex. Research and Reports in Biology, 2011, 2011, 13.	0.2	14

#	Article	IF	CITATIONS
235	Protocol for Standardizing High-to-Moderate Abundance Protein Biomarker Assessments Through an MRM-with-Standard-Peptides Quantitative Approach. Advances in Experimental Medicine and Biology, 2016, 919, 515-530.	0.8	14
236	Multiplexed panel of precisely quantified salivary proteins for biomarker assessment. Proteomics, 2017, 17, 1600230.	1.3	14
237	Comprehensive bile acid profiling in hereditary intrahepatic cholestasis: Genetic and clinical correlations. Liver International, 2018, 38, 1676-1685.	1.9	14
238	Proteomic Portraits Reveal Evolutionarily Conserved and Divergent Responses to Spinal Cord Injury. Molecular and Cellular Proteomics, 2021, 20, 100096.	2.5	14
239	Protein species-specific characterization of conformational change induced by multisite phosphorylation. Journal of Proteomics, 2016, 134, 138-143.	1.2	13
240	Top-down hydrogen/deuterium exchange and ECD-stitched FTICR-MS for probing structural dynamics of a 29-kDa enzyme. International Journal of Mass Spectrometry, 2012, 325-327, 130-138.	0.7	12
241	Association between the plasma proteome and serum ascorbic acid concentrations in humans. Journal of Nutritional Biochemistry, 2013, 24, 842-847.	1.9	12
242	Association between the plasma proteome and plasma \hat{l}_{\pm} -tocopherol concentrations in humans. Journal of Nutritional Biochemistry, 2013, 24, 396-400.	1.9	12
243	Application of Proteomics to the Study of Pollination Drops. Applications in Plant Sciences, 2013, 1, 1300008.	0.8	12
244	Application of a fast sorting algorithm to the assignment of mass spectrometric crossâ€linking data. Proteomics, 2014, 14, 1987-1989.	1.3	12
245	HDX Match Software for the Data Analysis of Top-Down ECD-FTMS Hydrogen/Deuterium Exchange Experiments. Journal of the American Society for Mass Spectrometry, 2015, 26, 1895-1898.	1.2	12
246	Degradome and Secretome of Pollination Drops of Ephedra. Botanical Review, The, 2015, 81, 1-27.	1.7	12
247	Metabolomic insights into the effects of thyroid hormone on Rana [Lithobates] catesbeiana metamorphosis using whole-body Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI). General and Comparative Endocrinology, 2018, 265, 237-245.	0.8	12
248	Proteogenomics of Colorectal Cancer Liver Metastases: Complementing Precision Oncology with Phenotypic Data. Cancers, 2019, 11, 1907.	1.7	12
249	Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase. Journal of Lipid Research, 2020, 61, 1675-1686.	2.0	12
250	NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain, 2022, 145, 3999-4015.	3.7	12
251	Plasma proteomics can discriminate isolated early from dual responses in asthmatic individuals undergoing an allergen inhalation challenge. Proteomics - Clinical Applications, 2012, 6, 476-485.	0.8	11
252	Maternal Apolipoprotein B100 Serum Levels are Diminished in Pregnancies with Intrauterine Growth Restriction and Differentiate from Controls. Proteomics - Clinical Applications, 2018, 12, e1800017.	0.8	11

#	Article	IF	Citations
253	Using Two Peptide Isotopologues as Internal Standards for the Streamlined Quantification of Low-Abundance Proteins by Immuno-MRM and Immuno-MALDI. Analytical Chemistry, 2020, 92, 12407-12414.	3.2	11
254	Mapping of protein phosphorylation by dual enzyme digestion and matrix-assisted laser desorption ionization–quadrupole orthogonal time-of-flight mass spectrometry. Analytical Biochemistry, 2002, 310, 215-218.	1.1	10
255	Improving the Biomarker Pipeline. Clinical Chemistry, 2010, 56, 1786-1788.	1.5	10
256	Comment on "Profiling Oil Sands Mixtures from Industrial Developments and Natural Groundwaters for Source Identification― Environmental Science & Environmental Science & 11013-11014.	4.6	10
257	Using isotopically-coded hydrogen peroxide as a surface modification reagent for the structural characterization of prion protein aggregates. Journal of Proteomics, 2014, 100, 160-166.	1.2	10
258	An extensive library of surrogate peptides for all human proteins. Journal of Proteomics, 2015, 129, 93-97.	1.2	10
259	An MRMâ€Based Cytokeratin Marker Assay as a Tool for Cancer Studies: Application to Lung Cancer Pleural Effusions. Proteomics - Clinical Applications, 2018, 12, 1700084.	0.8	10
260	The Gut Microbiome and Metabolome of Two Riparian Communities in the Amazon. Frontiers in Microbiology, 2019, 10, 2003.	1.5	10
261	Ligand-induced disorder-to-order transitions characterized by structural proteomics and molecular dynamics simulations. Journal of Proteomics, 2020, 211, 103544.	1.2	10
262	Plasma Protein Signatures of a Murine Venous Thrombosis Model and Slc44a2 Knockout Mice Using Quantitative-Targeted Proteomics. Thrombosis and Haemostasis, 2020, 120, 423-436.	1.8	10
263	Structure of prion βâ€oligomers as determined by shortâ€distance crosslinking constraintâ€guided discrete molecular dynamics simulations. Proteomics, 2021, 21, e2000298.	1.3	10
264	Targeted quantitation of CVD-linked plasma proteins for biomarker verification and validation. Expert Review of Proteomics, 2013, 10, 567-578.	1.3	9
265	"Out-Gel―Tryptic Digestion Procedure for Chemical Cross-Linking Studies with Mass Spectrometric Detection. Journal of Proteome Research, 2014, 13, 527-535.	1.8	9
266	Developing an iMALDI Method. Methods in Molecular Biology, 2013, 1023, 97-120.	0.4	9
267	Utility, promise, and limitations of liquid chromatographyâ€mass spectrometryâ€based therapeutic drug monitoring in precision medicine. Journal of Mass Spectrometry, 2021, 56, e4788.	0.7	9
268	Protein arrays for biomarker discovery. Current Opinion in Molecular Therapeutics, 2007, 9, 216-21.	2.8	9
269	Topâ€down analysis of recombinant histone H3 and its methylated analogs by ESI/FTâ€ICR mass spectrometry. Proteomics, 2010, 10, 3621-3630.	1.3	8
270	Modern Mass Spectrometry-Based Structural Proteomics. Advances in Protein Chemistry and Structural Biology, 2014, 95, 193-213.	1.0	8

#	Article	IF	CITATIONS
271	The Human Proteome Organization Chromosome 6 Consortium: Integrating chromosome-centric and biology/disease driven strategies. Journal of Proteomics, 2014, 100, 60-67.	1.2	8
272	Bead-Extractor Assisted Ready-to-Use Reagent System (BEARS) for Immunoprecipitation Coupled to MALDI-MS. Analytical Chemistry, 2017, 89, 3834-3839.	3.2	8
273	Immuno-MALDI (iMALDI) mass spectrometry for the analysis of proteins in signaling pathways. Expert Review of Proteomics, 2018, 15, 701-708.	1.3	8
274	Multiplexed LC–ESI–MRMâ€MSâ€based Assay for Identification of Coronary Artery Disease Biomarkers in Human Plasma. Proteomics - Clinical Applications, 2019, 13, 1700111.	0.8	8
275	An LC-MRM assay for the quantification of metanephrines from dried blood spots for the diagnosis of pheochromocytomas and paragangliomas. Analytica Chimica Acta, 2020, 1128, 140-148.	2.6	8
276	Phosphorylation of eIF4E in the stroma drives the production and spatial organisation of collagen type I in the mammary gland. Matrix Biology, 2022, 111, 264-288.	1.5	8
277	Top-Down Proteomics on a High-field Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Methods in Molecular Biology, 2009, 492, 215-231.	0.4	7
278	The Saccharomyces cerevisiae fermentation stress response protein lgd1p/Yfr017p regulates glycogen levels by inhibiting the glycogen debranching enzyme. FEMS Yeast Research, 2011, 11, 499-508.	1.1	7
279	Standard Operating Procedures and Protocols for the Preparation and Analysis of Plasma Samples Using the iTRAQ Methodology. , 2011, , 575-624.		7
280	Plasma 25-Hydroxyvitamin D, Hormonal Contraceptive Use, and the Plasma Proteome in Caucasian, East Asian, and South Asian Young Adults. Journal of Proteome Research, 2013, 12, 1797-1807.	1.8	7
281	Thrombospondin-1 and disease progression in dysferlinopathy. Human Molecular Genetics, 2017, 26, 4951-4960.	1.4	7
282	LC-MS/MS based comparative proteomics of floral nectars reveal different mechanisms involved in floral defense of Nicotiana spp., Petunia hybrida and Datura stramonium. Journal of Proteomics, 2020, 213, 103618.	1.2	7
283	Precise Quantitation of PTEN by Immuno-MRM: A Tool To Resolve the Breast Cancer Biomarker Controversy. Analytical Chemistry, 2021, 93, 10816-10824.	3.2	7
284	Multiple Reaction Monitoring-Mass Spectrometry Enables Robust Quantitation of Plasma Proteins Regardless of Whole Blood Processing Delays That May Occur in the Clinic. Molecular and Cellular Proteomics, 2022, 21, 100212.	2.5	7
285	A Non-Hazardous Deparaffinization Protocol Enables Quantitative Proteomics of Core Needle Biopsy-Sized Formalin-Fixed and Paraffin-Embedded (FFPE) Tissue Specimens. International Journal of Molecular Sciences, 2022, 23, 4443.	1.8	7
286	Profiling of dissolved organic compounds in the oil sands region using complimentary liquid–liquid extraction and ultrahigh resolution Fourier transform mass spectrometry. Environmental Earth Sciences, 2017, 76, 1.	1.3	6
287	The molecular mechanisms driving physiological changes after long duration space flights revealed by quantitative analysis of human blood proteins. BMC Medical Genomics, 2019, 12, 45.	0.7	6
288	Mouse Quantitative Proteomics Knowledgebase: reference protein concentration ranges in 20 mouse tissues using 5000 quantitative proteomics assays. Bioinformatics, 2021, 37, 1900-1908.	1.8	6

#	Article	IF	Citations
289	Direct and Precise Measurement of Bevacizumab Levels in Human Plasma Based on Controlled Methionine Oxidation and Multiple Reaction Monitoring. ACS Pharmacology and Translational Science, 2020, 3, 1304-1309.	2.5	6
290	Improved Protein Identification through the Use of Unstained Gels. Journal of Proteome Research, 2005, 4, 992-997.	1.8	5
291	Comprehensive identification of disulfide bonds using non-specific proteinase K digestion and CID-cleavable crosslinking analysis methodology for Orbitrap LC/ESI-MS/MS data. Methods, 2015, 89, 74-78.	1.9	5
292	Expression and purification of the full murine NPM2 and study of its interaction with protamines and histones. Biochemistry and Biophysics Reports, 2016, 6, 165-171.	0.7	5
293	Multiple Reaction Monitoring Using Double Isotopologue Peptide Standards for Protein Quantification. Methods in Molecular Biology, 2017, 1788, 193-214.	0.4	5
294	Systematic Optimization of the iMALDI Workflow for the Robust and Straightforward Quantification of Signaling Proteins in Cancer Cells. Proteomics - Clinical Applications, 2020, 14, 2000034.	0.8	5
295	Performance Assessment of a 125 Human Plasma Peptide Mixture Stored at Room Temperature for Multiple Reaction Monitoring–Mass Spectrometry. Journal of Proteome Research, 2021, 20, 4292-4302.	1.8	5
296	Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards. Methods in Molecular Biology, 2016, 1410, 1-21.	0.4	5
297	Targeted proteomics for evaluating risk of venous thrombosis following traumatic lowerâ€leg injury or knee arthroscopy. Journal of Thrombosis and Haemostasis, 2022, 20, 684-699.	1.9	5
298	Data self-recalibration and mixture mass fingerprint searching (DASER-MMF) to enhance protein identification within complex mixtures. Journal of the American Society for Mass Spectrometry, 2008, 19, 1914-1925.	1.2	4
299	Molecular profiling of naphthenic acids in technical mixtures and oil sands processâ€affected water using polar reversedâ€phase liquid chromatography–mass spectrometry. Electrophoresis, 2016, 37, 3089-3100.	1.3	4
300	Immuno-MALDI-TOF-MS in the Clinical Chemistry, 2018, 64, 1271-1272.	1.5	4
301	Detailed Method for Performing the ExSTA Approach in Quantitative Bottom-Up Plasma Proteomics. Methods in Molecular Biology, 2021, 2228, 353-384.	0.4	4
302	Emerging Mass Spectrometry-Based Technologies for Analyses of Chromatin Changes: Analysis of Histones and Histone Modifications. Methods in Molecular Biology, 2011, 773, 259-303.	0.4	4
303	Circulating Isovalerylcarnitine and Lung Cancer Risk: Evidence from Mendelian Randomization and Prediagnostic Blood Measurements. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1966-1974.	1.1	4
304	Mitotic Phosphorylation of the Anaphase-promoting Complex Inhibitory Subunit Mnd2 Is Necessary for Efficient Progression through Meiosis I. Journal of Biological Chemistry, 2007, 282, 17351-17362.	1.6	3
305	Glutathione <i>S</i> -Transferase (GST) M1, but Not GSTT1, Genotype Influences Plasma Proteomic Profiles in Caucasian and East Asian Young Adults. Journal of Proteome Research, 2012, 11, 5022-5033.	1.8	3
306	Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Journal of Visualized Experiments, 2013, , e50733.	0.2	3

#	Article	IF	CITATIONS
307	Early risk prognosis of free-flap transplant failure by quantitation of the macrophage colony-stimulating factor in patient plasma using 2-dimensional liquid-chromatography multiple reaction monitoring-mass spectrometry. Medicine (United States), 2016, 95, e4808.	0.4	3
308	Peptide and Protein Quantification Using Automated Immuno-MALDI (iMALDI). Journal of Visualized Experiments, 2017, , .	0.2	3
309	The Special Issue: Clinical Proteomics for Precision Medicine. Proteomics - Clinical Applications, 2018, 12, 1600144.	0.8	3
310	Mass Spectrometric Determination of Protein Ubiquitination. Methods in Molecular Biology, 2019, 1934, 191-221.	0.4	3
311	Process and Workflow for Preparation of Disparate Mouse Tissues for Proteomic Analysis. Journal of Proteome Research, 2021, 20, 305-316.	1.8	3
312	Association Between Caffeine Intake and the Plasma Proteome in Humans. Journal of Caffeine Research, 2013, 3, 175-181.	1.0	2
313	Exploring phlebotomy technique as a pre-analytical factor in proteomic analyses by mass spectrometry. Genome, 2015, 58, 569-576.	0.9	2
314	Genetic Variation in 9p21 and the Plasma Proteome. Journal of Proteome Research, 2018, 17, 2649-2656.	1.8	2
315	Semiquantitative Proteomic Research of Protein Plasma Profile of Volunteers in 21-Day Head-Down Bed Rest. Frontiers in Physiology, 2020, 11, 678.	1.3	2
316	Supermolecule-assisted imaging of low-molecular-weight quaternary-ammonium compounds by MALDI-MS of their non-covalent complexes with cucurbit[7]uril. RSC Advances, 2020, 10, 34261-34265.	1.7	2
317	Proteotyping of knockout mouse strains reveals sex- and strain-specific signatures in blood plasma. Npj Systems Biology and Applications, 2021, 7, 25.	1.4	2
318	Systemic Biomarkers Show Elevated Oxidative Stress and Chronic Inflammation in Two Disorders of Neurodegeneration with Brain Iron Accumulation (NBIA). Blood, 2017, 130, 943-943.	0.6	2
319	A protocol for identifying the binding sites of small molecules on the cystic fibrosis transmembrane conductance regulator (CFTR) protein. STAR Protocols, 2022, 3, 101258.	0.5	2
320	Front Cover: Multiplexed MRM-based assays for the quantitation of proteins in mouse plasma and heart tissue. Proteomics, 2017, 17, 1770050.	1.3	1
321	Crystallographic analysis of Tarl and Tarl, a cytidylyltransferase and reductase pair for CDP-ribitol synthesis in Staphylococcus aureus wall teichoic acid biogenesis. Journal of Structural Biology, 2021, 213, 107733.	1.3	1
322	A multiplexed, automated immuno-matrix assisted laser desorption/ionization mass spectrometry assay for simultaneous and precise quantitation of PTEN and p $110\hat{l}\pm$ in cell lines and tumor tissues. Analyst, The, 2021, 146, 6566-6575.	1.7	1
323	Direct and Precise Measurement of Bevacizumab Levels in Human Plasma Based on Controlled Methionine Oxidation and Multiple Reaction Monitoring. ACS Pharmacology and Translational Science, 2020, 3, 1304-1309.	2.5	1
324	Immuno-MALDI-MS for Accurate Quantitation of Targeted Peptides from Volume-Restricted Samples. Methods in Molecular Biology, 2022, , 203-225.	0.4	1

#	Article	lF	CITATIONS
325	Technology Development: an Overview. Molecular and Cellular Proteomics, 2011, 10, S1-S3.	2.5	O
326	Introduction to the HUPO 2015 Special Issue. Journal of Proteomics, 2016, 149, 1-2.	1.2	0
327	Corrigendum to "Introduction to the HUPO 2015 Special Issue―[J. Proteomics (2016) 1–2]. Journal of Proteomics, 2017, 152, 355-356.	1.2	O
328	Editorial. Journal of Proteomics, 2020, 228, 103937.	1.2	0
329	Differential protein expression in normal and trisomic cell lines from murine cerebral cortex measured by itraq and Mass Spectrometry. Mediterranean Journal of Chemistry, 2012, 2, 438-458.	0.3	O
330	Correction: Concentration Determination of >200 Proteins in Dried Blood Spots for Biomarker Discovery and Validation. Molecular and Cellular Proteomics, 2020, 19, 1738.	2.5	0
331	Characteristics of blood plasma proteome changes associated with the hemorrhagic purpura of cosmonauts on the first day after long-term space missions. Life Sciences in Space Research, 2022, 33, 7-12.	1.2	0
332	Immuno-multiple reaction monitoring (iMRM) for quantitation of PD-L1 and PD-1-signaling proteins in non-small cell lung carcinoma (NSCLC) Journal of Clinical Oncology, 2022, 40, 2627-2627.	0.8	0