Frank Berendse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8327302/publications.pdf

Version: 2024-02-01

26613 19657 12,631 112 61 107 citations h-index g-index papers 113 113 113 13148 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 2010, 11, 97-105.	2.7	1,039
2	Consequences of biodiversity loss for litter decomposition across biomes. Nature, 2014, 509, 218-221.	27.8	600
3	Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes. Nature, 2001, 413, 723-725.	27.8	526
4	Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos, 2004, 106, 576-586.	2.7	356
5	Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 695-700.	7.1	335
6	Reconciling complexity with stability in naturally assembling food webs. Nature, 2007, 449, 599-602.	27.8	328
7	Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology, 2001, 7, 591-598.	9.5	307
8	The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Plant Ecology, 1988, 76, 63-69.	1.2	279
9	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	9.5	259
10	Predicting ecosystem stability from community composition and biodiversity. Ecology Letters, 2013, 16, 617-625.	6.4	251
11	Diversity enhances community recovery, but not resistance, after drought. Journal of Ecology, 2010, 98, 81-86.	4.0	227
12	Loss of Plant Species Diversity Reduces Soil Erosion Resistance. Ecosystems, 2015, 18, 881-888.	3.4	222
13	Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds., 2011, 21, 1772-1781.		221
14	Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. Journal of Ecology, 2014, 102, 1163-1170.	4.0	220
15	Unveiling belowâ€ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species. Journal of Ecology, 2010, 98, 1117-1127.	4.0	219
16	Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. Journal of Applied Ecology, 2011, 48, 570-579.	4.0	205
17	Competition in Heathland along an Experimental Gradient of Nutrient Availability. Oikos, 1990, 57, 310.	2.7	181
18	Diversity reduces invasibility in experimental plant communities: the role of plant species. Ecology Letters, 2003, 6, 910-918.	6.4	180

#	Article	IF	Citations
19	Litter Decomposability A Neglected Component of Plant Fitness. Journal of Ecology, 1994, 82, 187.	4.0	179
20	Ecological Effectiveness of Agri-Environment Schemes in Different Agricultural Landscapes in The Netherlands. Conservation Biology, 2004, 18, 775-786.	4.7	177
21	Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availability. Oecologia, 1998, 115, 351-358.	2.0	175
22	SOIL NUTRIENT HETEROGENEITY ALTERS COMPETITION BETWEEN TWO PERENNIAL GRASS SPECIES. Ecology, 2001, 82, 2534-2546.	3.2	174
23	Effects of Dominant Plant Species on Soils during Succession in Nutrient-poor Ecosystems. Biogeochemistry, 1998, 42, 73-88.	3.5	168
24	Positive effects of plant species diversity on productivity in the absence of legumes. Ecology Letters, 2003, 6, 170-175.	6.4	168
25	Lost in diversity: the interactions between soilâ€borne fungi, biodiversity and plant productivity. New Phytologist, 2018, 218, 542-553.	7.3	160
26	Effects of nutrients and shade on treeâ€grass interactions in an East African savanna. Journal of Vegetation Science, 2001, 12, 579-588.	2.2	153
27	N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytologist, 2003, 157, 339-347.	7.3	151
28	Artificial light at night causes diapause inhibition and sexâ€specific life history changes in a moth. Ecology and Evolution, 2014, 4, 2082-2089.	1.9	151
29	Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nature Climate Change, 2015, 5, 67-70.	18.8	147
30	Competition and Nutrient Availability in Heathland and Grassland Ecosystems., 1990,, 93-116.		139
31	Reduced plant–soil feedback of plant species expanding their range as compared to natives. Journal of Ecology, 2007, 95, 1050-1057.	4.0	131
32	How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos, 2003, 103, 537-547.	2.7	128
33	How Phosphorus Availability Affects the Impact of Nitrogen Deposition on Sphagnum and Vascular Plants in Bogs. Ecosystems, 2004, 7, 793-804.	3.4	128
34	Decreased summer water table depth affects peatland vegetation. Basic and Applied Ecology, 2009, 10, 330-339.	2.7	124
35	Factors underlying farmers' intentions to perform unsubsidised agri-environmental measures. Land Use Policy, 2016, 59, 207-216.	5.6	124
36	Experimental illumination of natural habitat—an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140129.	4.0	120

#	Article	IF	Citations
37	The angiosperm radiation revisited, an ecological explanation for Darwin's â€~abominable mystery'. Ecology Letters, 2009, 12, 865-872.	6.4	118
38	Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. Journal of Ecology, 2001, 89, 268-279.	4.0	115
39	Competition between plant populations with different rooting depths. Oecologia, 1982, 53, 50-55.	2.0	114
40	Artificial light at night inhibits mating in a Geometrid moth. Insect Conservation and Diversity, 2015, 8, 282-287.	3.0	106
41	Interactive effects of water table and precipitation on net CO ₂ assimilation of three coâ€occurring <i>Sphagnum</i> mosses differing in distribution above the water table. Global Change Biology, 2009, 15, 680-691.	9.5	104
42	The effect of temperature on growth and competition between Sphagnum species. Oecologia, 2008, 156, 155-167.	2.0	94
43	Energy or nutrient regulation of decomposition: Implications for the mineralization-immobilization response to perturbations. Soil Biology and Biochemistry, 1984, 16, 63-67.	8.8	92
44	The effect of plant species on soil nitrogen mineralization. Journal of Ecology, 2001, 89, 555-561.	4.0	90
45	Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia, 2013, 173, 269-280.	2.0	90
46	Plant species as predictors of soil pH: Replacing expert judgement with measurements. Journal of Vegetation Science, 2005, 16, 461-470.	2.2	88
47	Plant species and nutritional-mediated control over rhizodeposition and root decomposition. Plant and Soil, 2001, 228, 191-200.	3.7	87
48	Declining Biodiversity in Agricultural Landscapes and the Effectiveness of Agri-environment Schemes. Ambio, 2004, 33, 499-502.	5.5	87
49	The effect of lignin and nitrogen on the decomposition of litter in nutrient-poor ecosystems: a theoretical approach. Canadian Journal of Botany, 1987, 65, 1116-1120.	1.1	86
50	Competition between Plant Populations at Low and High Nutrient Supplies. Oikos, 1994, 71, 253.	2.7	86
51	Response of ground-nesting farmland birds to agricultural intensification across Europe: Landscape and field level management factors. Biological Conservation, 2012, 152, 74-80.	4.1	86
52	Longâ€ŧerm effects of climate change on vegetation and carbon dynamics in peat bogs. Journal of Vegetation Science, 2008, 19, 307-320.	2.2	85
53	Direct and indirect effects of the most widely implemented Dutch agri-environment schemes on breeding waders. Journal of Applied Ecology, 2006, 44, 70-80.	4.0	83
54	Competition between plant populations with different rooting depths II. Pot experiments. Oecologia, 1981, 48, 334-341.	2.0	79

#	Article	IF	Citations
55	Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Studies in Mycology, 2005, 53, 147-162.	7.2	78
56	Macroâ€detritivore identity drives leaf litter diversity effects. Oikos, 2011, 120, 1092-1098.	2.7	77
57	Plant–soil interactions in the expansion and native range of a poleward shifting plant species. Global Change Biology, 2010, 16, 380-385.	9.5	75
58	Experimental manipulation of succession in heathland ecosystems. Oecologia, 1994, 100-100, 38-44.	2.0	74
59	Collective agri-environment schemes: How can regional environmental cooperatives enhance farmers' intentions for agri-environment schemes?. Land Use Policy, 2015, 42, 759-766.	5.6	73
60	The Nitrogen Cycle in Boreal Peatlands. , 2006, , 195-230.		69
61	Artificial night lighting disrupts sex pheromone in a noctuid moth. Ecological Entomology, 2015, 40, 401-408.	2.2	69
62	Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient. Oecologia, 2009, 159, 705-715.	2.0	68
63	Methane emissions in two drained peat agro-ecosystems with high and low agricultural intensity. Plant and Soil, 2010, 329, 509-520.	3.7	68
64	Plant species richness regulates soil respiration through changes in productivity. Oecologia, 2010, 163, 805-813.	2.0	67
65	The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos, 2008, 117, 1258-1268.	2.7	60
66	Effects of Increased Nitrogen Deposition on the Distribution of 15N-labeled Nitrogen between Sphagnum and Vascular Plants. Ecosystems, 2002, 5, 500-508.	3.4	57
67	Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?. New Phytologist, 2014, 203, 70-80.	7. 3	57
68	Impacts of Elevated Carbon Dioxide and Temperature on a Boreal Forest Ecosystem (CLIMEX Project). Ecosystems, 1998, 1, 345-351.	3.4	55
69	Effects of competition on root–shoot allocation in Plantago lanceolata L.: adaptive plasticity or ontogenetic drift?. Plant Ecology, 2009, 201, 567-573.	1.6	55
70	Recovery of plant species richness during long-term fertilization of a species-rich grassland. Ecology, 2011, 92, 1393-1398.	3.2	53
71	Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition. Oikos, 2002, 97, 415-425.	2.7	52
72	Landscape composition influences farm management effects on farmland birds in winter: A pan-European approach. Agriculture, Ecosystems and Environment, 2010, 139, 571-577.	5.3	51

#	Article	IF	CITATIONS
73	Changes in soil and vegetation during dune slack succession. Journal of Vegetation Science, 2004, 15, 209-218.	2.2	49
74	Seasonal changes and vertical distribution of root standing biomass of graminoids and shrubs at a Siberian tundra site. Plant and Soil, 2016, 407, 55-65.	3.7	49
75	Above―and belowâ€ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. Journal of Ecology, 2017, 105, 947-957.	4.0	49
76	Field Simulation of Global Change: Transplanting Northern Bog Mesocosms Southward. Ecosystems, 2010, 13, 712-726.	3.4	47
77	Interactions between spatially separated herbivores indirectly alter plant diversity. Ecology Letters, 2004, 8, 30-37.	6.4	46
78	Effects of elevated CO 2 and vascular plants on evapotranspiration in bog vegetation. Global Change Biology, 2001, 7, 817-827.	9.5	44
79	Embryo dune development drivers: beach morphology, growing season precipitation, and storms. Earth Surface Processes and Landforms, 2017, 42, 1733-1744.	2.5	44
80	The interaction between epiphytic algae, a parasitic fungus and Sphagnum as affected by N and P. Oikos, 2003, 103, 59-68.	2.7	43
81	Response of Sphagnum species mixtures to increased temperature and nitrogen availability. Plant Ecology, 2009, 204, 97-111.	1.6	43
82	Do meadow birds profit from agri-environment schemes in Dutch agricultural landscapes?. Biological Conservation, 2009, 142, 2949-2953.	4.1	41
83	Agriculture intensification reduces plant taxonomic and functional diversity across European arable systems. Functional Ecology, 2020, 34, 1448-1460.	3.6	39
84	Response of a Sphagnum bog plant community to elevated CO2 and N supply. Plant Ecology, 2002, 162, 123-134.	1.6	37
85	Experimental light at night has a negative long-term impact on macro-moth populations. Current Biology, 2020, 30, R694-R695.	3.9	36
86	Taxonomic and functional diversity of farmland bird communities across Europe: effects of biogeography and agricultural intensification. Biodiversity and Conservation, 2011, 20, 3663-3681.	2.6	34
87	The effect of nutrient supply and light intensity on tannins and mycorrhizal colonisation in Dutch heathland ecosystems. Plant Ecology, 2009, 201, 661-675.	1.6	33
88	Short-term and long-term effects of tannins on nitrogen mineralisation and litter decomposition in kauri (Agathis australis (D. Don) Lindl.) forests. Plant and Soil, 2006, 287, 337-345.	3.7	32
89	Plant-Herbivore Interaction and Its Consequences for Succession in Wetland Ecosystems: A Modeling Approach. Ecosystems, 1999, 2, 122-138.	3.4	31
90	Species' traits influence ground beetle responses to farm and landscape level agricultural intensification in Europe. Journal of Insect Conservation, 2014, 18, 837-846.	1.4	31

#	Article	IF	Citations
91	Diversity effects on root length production and loss in an experimental grassland community. Functional Ecology, 2015, 29, 1560-1568.	3.6	31
92	Title is missing!. Plant Ecology, 2000, 148, 51-59.	1.6	26
93	Habitat use and diet of Skylarks (Alauda arvensis) wintering in an intensive agricultural landscape of the Netherlands. Journal of Ornithology, 2014, 155, 507-518.	1.1	26
94	Including hydrological self-regulating processes in peatland models: Effects on peatmoss drought projections. Science of the Total Environment, 2017, 580, 1389-1400.	8.0	26
95	Soil heterogeneity and plant species diversity in experimental grassland communities: contrasting effects of soil nutrients and pH at different spatial scales. Plant and Soil, 2019, 442, 497-509.	3.7	26
96	The effectiveness of ditch banks as dispersal corridor for plants in agricultural landscapes depends on species' dispersal traits. Biological Conservation, 2014, 171, 91-98.	4.1	24
97	The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra. Polar Biology, 2016, 39, 1245-1255.	1.2	24
98	Spatial heterogeneity in plant–soil feedbacks alters competitive interactions between two grassland plant species. Functional Ecology, 2018, 32, 2085-2094.	3.6	24
99	How Does Tree Density Affect Water Loss of Peatlands? A Mesocosm Experiment. PLoS ONE, 2014, 9, e91748.	2.5	23
100	Density-dependency and plant-soil feedback: former plant abundance influences competitive interactions between two grassland plant species through plant-soil feedbacks. Plant and Soil, 2018, 428, 441-452.	3.7	20
101	Effects of litters with different concentrations of phenolics on the competition between Calluna vulgaris and Deschampsia flexuosa. Plant and Soil, 2010, 327, 131-141.	3.7	19
102	Thaw pond development and initial vegetation succession in experimental plots at a Siberian lowland tundra site. Plant and Soil, 2017, 420, 147-162.	3.7	19
103	MODEL ANALYSIS OF THE EFFECTS OF HISTORIC CO2LEVELS AND NITROGEN INPUTS ON VEGETATION SUCCESSION. , 1999, 9, 920-935.		16
104	A matter of time: Recovery of plant species diversity in wild plant communities at declining nitrogen deposition. Diversity and Distributions, 2021, 27, 1180-1193.	4.1	16
105	Highâ€resolution peat volume change in a northern peatland: Spatial variability, main drivers, and impact on ecohydrology. Ecohydrology, 2019, 12, e2114.	2.4	14
106	Temporal effects of agri-environment schemes on ditch bank plant species. Basic and Applied Ecology, 2013, 14, 289-297.	2.7	13
107	Soil Nutrient Heterogeneity Alters Competition between Two Perennial Grass Species. Ecology, 2001, 82, 2534.	3.2	12
108	Do Field Margins Enrich the Diet of the Eurasian Skylark <i>Alauda arvensis</i> on Intensive Farmland?. Ardea, 2014, 102, 161-174.	0.6	9

#	Article	IF	CITATIONS
109	Effects of grass field margin management on food availability for Black-tailed Godwit chicks. Journal for Nature Conservation, 2016, 29, 45-50.	1.8	7
110	Food Availability for Meadow Bird Families in Grass Field Margins. Ardea, 2015, 103, 17-26.	0.6	5
111	Plant species as predictors of soil pH: Replacing expert judgement with measurements. Journal of Vegetation Science, 2005, 16, 461.	2.2	5
112	Travelling to a former sea floor: colonization of forests by understorey plant species on land recently reclaimed from the sea. Journal of Vegetation Science, 2010, 21, 167-176.	2.2	2