
Francesca Comitini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8327258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving white wine aroma and structure by non-Saccharomyces yeasts. , 2022, , 117-130.		1
2	Biocontrol of Non-Saccharomyces Yeasts in Vineyard against the Gray Mold Disease Agent Botrytis cinerea. Microorganisms, 2022, 10, 200.	3.6	21
3	Exploitation of Yeasts with Probiotic Traits for Kefir Production: Effectiveness of the Microbial Consortium. Fermentation, 2022, 8, 9.	3.0	12
4	Ecological Distribution and Oenological Characterization of Native Saccharomyces cerevisiae in an Organic Winery. Fermentation, 2022, 8, 224.	3.0	2
5	Characterization of wild yeasts isolated from artisan dairies in the Marche region, Italy, for selection of promising functional starters. LWT - Food Science and Technology, 2021, 139, 110531.	5.2	13
6	Starmerella bombicola and Saccharomyces cerevisiae in Wine Sequential Fermentation in Aeration Condition: Evaluation of Ethanol Reduction and Analytical Profile. Foods, 2021, 10, 1047.	4.3	3
7	Assessment of non-conventional yeasts with potential probiotic for protein-fortified craft beer production. LWT - Food Science and Technology, 2021, 145, 111361.	5.2	19
8	Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review. International Journal of Molecular Sciences, 2021, 22, 7754.	4.1	37
9	Purification and Characterization of WA18, a New Mycocin Produced by Wickerhamomyces anomalus Active in Wine Against Brettanomyces bruxellensis Spoilage Yeasts. Microorganisms, 2021, 9, 56.	3.6	10
10	Footprint of Nonconventional Yeasts and Their Contribution in Alcoholic Fermentations. , 2020, , 435-465.		5
11	Improved Saccharomyces cerevisiae Strain in Pure and Sequential Fermentation with Torulaspora delbrueckii for the Production of Verdicchio Wine with Reduced Sulfites. Applied Sciences (Switzerland), 2020, 10, 6722.	2.5	7
12	Sub-Lethal Effects of Pesticides on the DNA of Soil Organisms as Early Ecotoxicological Biomarkers. Frontiers in Microbiology, 2020, 11, 1892.	3.5	26
13	Potential Probiotic Yeasts Sourced from Natural Environmental and Spontaneous Processed Foods. Foods, 2020, 9, 287.	4.3	38
14	Evolution of Aromatic Profile of Torulaspora delbrueckii Mixed Fermentation at Microbrewery Plant. Fermentation, 2020, 6, 7.	3.0	16
15	Alternative Ingredients for Feed and Food. , 2020, , 529-545.		2
16	Reduction of Sulfur Compounds through Genetic Improvement of Native Saccharomyces cerevisiae Useful for Organic and Sulfite-Free Wine. Foods, 2020, 9, 658.	4.3	9
17	Exploitation of Three Non-Conventional Yeast Species in the Brewing Process. Microorganisms, 2019, 7, 11.	3.6	55
18	Metschnikowia pulcherrima Selected Strain for Ethanol Reduction in Wine: Influence of Cell Immobilization and Aeration Condition. Foods, 2019, 8, 378.	4.3	34

FRANCESCA COMITINI

#	Article	IF	CITATIONS
19	Volatile profile of reduced alcohol wines fermented with selected non-Saccharomyces yeasts under different aeration conditions. Food Microbiology, 2019, 84, 103247.	4.2	66
20	The impact of fungicide treatments on yeast biota of Verdicchio and Montepulciano grape varieties. PLoS ONE, 2019, 14, e0217385.	2.5	21
21	The Influence of Fungicide Treatments on Mycobiota of Grapes and Its Evolution during Fermentation Evaluated by Metagenomic and Culture-Dependent Methods. Microorganisms, 2019, 7, 114.	3.6	13
22	Yeast killer toxins: from ecological significance to application. Critical Reviews in Biotechnology, 2019, 39, 603-617.	9.0	74
23	Occurrence of Brettanomyces bruxellensis on Grape Berries and in Related Winemaking Cellar. Frontiers in Microbiology, 2019, 10, 415.	3.5	24
24	Use of Non-Saccharomyces Yeasts in Red Winemaking. , 2019, , 51-68.		10
25	Yeast Ecology of Wine Production. , 2019, , 1-42.		2
26	Torulaspora delbrueckii for secondary fermentation in sparkling wine production. Food Microbiology, 2018, 74, 100-106.	4.2	44
27	Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. International Journal of Food Microbiology, 2018, 265, 18-22.	4.7	107
28	Fitness of Selected Indigenous Saccharomyces cerevisiae Strains for White Piceno DOC Wines Production. Fermentation, 2018, 4, 37.	3.0	11
29	Occurrence and involvement of yeast biota in ripening of Italian Fossa cheese. European Food Research and Technology, 2018, 244, 1921-1931.	3.3	16
30	New insights on the use of wine yeasts. Current Opinion in Food Science, 2017, 13, 44-49.	8.0	71
31	Torulaspora delbrueckii contribution in mixed brewing fermentations with different Saccharomyces cerevisiae strains. International Journal of Food Microbiology, 2017, 259, 7-13.	4.7	53
32	Sequential Fermentation with Selected Immobilized Non-Saccharomyces Yeast for Reduction of Ethanol Content in Wine. Frontiers in Microbiology, 2016, 7, 278.	3.5	79
33	Yeast Interactions in Inoculated Wine Fermentation. Frontiers in Microbiology, 2016, 7, 555.	3.5	140
34	Non-conventional Yeast Species for Lowering Ethanol Content of Wines. Frontiers in Microbiology, 2016, 7, 642.	3.5	163
35	Controlled mixed fermentation at winery scale using Zygotorulaspora florentina and Saccharomyces cerevisiae. International Journal of Food Microbiology, 2016, 234, 36-44.	4.7	45
36	Evaluation of damage induced by Kwkt and Pikt zymocins against <i>Brettanomyces/Dekkera</i> spoilage yeast, as compared to sulphur dioxide. Journal of Applied Microbiology, 2016, 121, 207-214.	3.1	24

FRANCESCA COMITINI

#	Article	IF	CITATIONS
37	Torulaspora delbrueckii in the brewing process: A new approach to enhance bioflavour and to reduce ethanol content. Food Microbiology, 2016, 56, 45-51.	4.2	136
38	Yeasts From Xerophilic Environments Reveal Antimicrobial Action Against Fruit Pathogenic Molds. Journal of Food Safety, 2016, 36, 100-108.	2.3	4
39	TdPIR minisatellite fingerprinting as a useful new tool for Torulaspora delbrueckii molecular typing. International Journal of Food Microbiology, 2015, 200, 47-51.	4.7	6
40	Cell-recycle batch process of Scheffersomyces stipitis and Saccharomyces cerevisiae co-culture for second generation bioethanol production. Biotechnology Letters, 2015, 37, 2213-2218.	2.2	10
41	Influence of vintage and selected starter on Torulaspora delbrueckii/Saccharomyces cerevisiae sequential fermentation. European Food Research and Technology, 2015, 241, 827-833.	3.3	27
42	Yeast interactions in multi-starter wine fermentation. Current Opinion in Food Science, 2015, 1, 1-6.	8.0	151
43	Sequential fermentation using non- <i>Saccharomyces</i> yeasts for the reduction of alcohol content in wine. BIO Web of Conferences, 2014, 3, 02015.	0.2	8
44	Antimicrobial activity of <i>Metschnikowia pulcherrima</i> on wine yeasts. Journal of Applied Microbiology, 2014, 116, 1209-1217.	3.1	179
45	Dominance and influence of selected <i>Saccharomyces cerevisiae</i> strains on the analytical profile of craft beer refermentation. Journal of the Institute of Brewing, 2014, 120, 262-267.	2.3	35
46	Integrated biological approaches for olive mill wastewater treatment and agricultural exploitation. International Biodeterioration and Biodegradation, 2014, 88, 162-168.	3.9	18
47	Tp <i>BGL2</i> codes for a <i>Tetrapisispora phaffii</i> killer toxin active against wine spoilage yeasts. FEMS Yeast Research, 2014, 14, 464-471.	2.3	17
48	Fermentative aptitude of non-Saccharomyces wine yeast for reduction in the ethanol content in wine. European Food Research and Technology, 2014, 239, 41.	3.3	53
49	Biocontrol of postharvest brown rot of sweet cherries by Saccharomyces cerevisiae Disva 599, Metschnikowia pulcherrima Disva 267 and Wickerhamomyces anomalus Disva 2 strains. Postharvest Biology and Technology, 2014, 96, 64-68.	6.0	43
50	Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine. Food Microbiology, 2013, 33, 271-281.	4.2	317
51	Effects of nutrient supplementation on fermentation kinetics, H2S evolution, and aroma profile in Verdicchio DOC wine production. European Food Research and Technology, 2013, 236, 145-154.	3.3	12
52	Grape berry yeast communities: Influence of fungicide treatments. International Journal of Food Microbiology, 2013, 161, 240-246.	4.7	79
53	Palm Wine. , 2012, , 631-638.		1
54	Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation. Microbial Cell Factories, 2012, 11, 18.	4.0	39

4

FRANCESCA COMITINI

#	Article	IF	CITATIONS
55	Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. International Biodeterioration and Biodegradation, 2012, 66, 39-46.	3.9	94
56	Screening of yeasts for growth on crude glycerol and optimization of biomass production. Bioresource Technology, 2012, 110, 488-495.	9.6	57
57	Kluyveromyces wickerhamii killer toxin: purification and activity towards Brettanomyces/Dekkera yeasts in grape must. FEMS Microbiology Letters, 2011, 316, 77-82.	1.8	42
58	Fungicides degradation in an organic biomixture: impact on microbial diversity. New Biotechnology, 2011, 29, 99-106.	4.4	65
59	Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiology, 2011, 28, 873-882.	4.2	501
60	Outlining a future for non-Saccharomyces yeasts: Selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. International Journal of Food Microbiology, 2011, 147, 170-180.	4.7	180
61	Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Annals of Microbiology, 2011, 61, 25-32.	2.6	120
62	Potential spoilage non-Saccharomyces yeasts in mixed cultures with Saccharomyces cerevisiae. Annals of Microbiology, 2011, 61, 137-144.	2.6	52
63	Toxicity assessment of compounds in soil using a simple respirometric technique. International Biodeterioration and Biodegradation, 2011, 65, 60-64.	3.9	4
64	Non-Saccharomyces Yeasts in Controlled Mixed Culture Fermentation in Winemaking: the Role of Metabolic Interactions. Journal of Biotechnology, 2010, 150, 299-300.	3.8	3
65	The zymocidial activity of Tetrapisispora phaffii in the control of Hanseniaspora uvarum during the early stages of winemaking. Letters in Applied Microbiology, 2010, 50, 50-56.	2.2	35
66	Controlled mixed culture fermentation: a new perspective on the use of non- <i>Saccharomyces</i> â€f yeasts in winemaking. FEMS Yeast Research, 2010, 10, 123-133.	2.3	454
67	Yeast diversity during tapping and fermentation of palm wine from Cameroon. Food Microbiology, 2009, 26, 415-420.	4.2	83
68	Effect of Phanerochaete chrysosporium inoculation during maturation of co-composted agricultural wastes mixed with olive mill wastewater. Waste Management, 2009, 29, 1615-1621.	7.4	22
69	Tetrapisispora phaffii killer toxin is a highly specific β-glucanase that disrupts the integrity of the yeast cell wall. Microbial Cell Factories, 2009, 8, 55.	4.0	47
70	Influence of fungicide treatments on the occurrence of yeast flora associated with wine grapes. Annals of Microbiology, 2008, 58, 489-493.	2.6	55
71	Yeast diversity in crop-growing environments in Cameroon. International Journal of Food Microbiology, 2008, 127, 184-189.	4.7	30
72	Survival of inoculated Saccharomyces cerevisiae strain on wine grapes during two vintages. Letters in Applied Microbiology, 2006, 42, 248-253.	2.2	22

#	Article	IF	CITATIONS
73	Influence of Temperature and Oxygen Concentration on the Fermentation Behaviour of Candida Stellata in Mixed Fermentation with Saccharomyces Cerevisiae. World Journal of Microbiology and Biotechnology, 2006, 22, 619-623.	3.6	15
74	Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. International Journal of Food Microbiology, 2006, 108, 239-245.	4.7	272
75	Interactions betweenSaccharomyces cerevisiaeand malolactic bacteria: preliminary characterization of a yeast proteinaceous compound(s) active againstOenococcus oeni. Journal of Applied Microbiology, 2005, 99, 105-111.	3.1	76
76	Kluyveromyces phaffii killer toxin active against wine spoilage yeasts: purification and characterization. Microbiology (United Kingdom), 2004, 150, 2535-2541.	1.8	71
77	Pichia anomalaandKluyveromyces wickerhamiikiller toxins as new tools againstDekkera/Brettanomycesspoilage yeasts. FEMS Microbiology Letters, 2004, 238, 235-240.	1.8	134
78	Corrigendum to "Pichia anomalaandKluyveromyces wickerhamiikiller toxins as new tools againstDekkera/Brettanomycesspoilage yeasts¢€•[FEMS Letters 238 (2004) 238–240]. FEMS Microbi Letters, 2004, 241, 127-127.	olagy	33
79	Enological and genetic traits of isolated from former and modern wineries. FEMS Yeast Research, 2004, 5, 237-245.	2.3	54
80	Corrigendum to ? and killer toxins as new tools against spoilage yeasts? [FEMS Letters 238 (2004) 238?240]. FEMS Microbiology Letters, 2004, 241, 127-127.	1.8	2