Li Du

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8327164/li-du-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65
papers

3,199
citations

49
h-index

56
g-index

67
ext. papers

9.6
avg, IF

544
L-index

#	Paper	IF	Citations
65	Enabling Scalable Polymer Electrolyte with Synergetic Ion Conductive Channels via a Two Stage Rheology Tuning UV Polymerization Strategy <i>Small</i> , 2022 , e2202013	11	1
64	Co N-Decorated 3D Wood-Derived Carbon Host Enables Enhanced Cathodic Electrocatalysis and Homogeneous Lithium Deposition for Lithium-Sulfur Full Cells. <i>Small</i> , 2021 , e2105664	11	3
63	Recent Advances and Perspectives in Lithium-Sulfur Pouch Cells. <i>Molecules</i> , 2021 , 26,	4.8	1
62	Inhibition of Polysulfide Shuttles in Liß Batteries: Modified Separators and Solid-State Electrolytes. <i>Advanced Energy Materials</i> , 2021 , 11, 2000779	21.8	72
61	Advanced Atomically Dispersed Metal Nitrogen Carbon Catalysts Toward Cathodic Oxygen Reduction in PEM Fuel Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2101222	21.8	33
60	Robust InNCo3Mmx Nitride-Supported Pt Nanoparticles as High-Performance Bifunctional Electrocatalysts for ZnAir Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5293-5300	6.1	8
59	Composition-Tunable Antiperovskite Cu In NNi as Superior Electrocatalysts for the Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17488-17493	16.4	15
58	Mesoporous carbon confined intermetallic nanoparticles as highly durable electrocatalysts for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 15822-15828	13	28
57	Coupling hollow FeO nanoparticles with oxygen vacancy on mesoporous carbon as a high-efficiency ORR electrocatalyst for Zn-air battery. <i>Journal of Colloid and Interface Science</i> , 2020 , 567, 410-418	9.3	34
56	Hybrid Charge-Storage Route to Nb2CTx MXene as Anode for Sodium-Ion Batteries. <i>ChemistrySelect</i> , 2020 , 5, 1186-1192	1.8	13
55	An Efficient Bifunctional Electrocatalyst of Phosphorous Carbon Co-doped MOFs. <i>Nanoscale Research Letters</i> , 2020 , 15, 169	5	1
54	A comparative study on the catalytic activities and stabilities of atomic-layered platinum on dispersed Ti0.9Cu0.1N nanoparticles supported by N-doped carbon nanotubes (N-CNTs) and reduced graphene oxide (N-rGO). <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 1857-1866	6.7	1
53	Composition-Tunable Antiperovskite CuxIn1\(\text{NNi3} \) as Superior Electrocatalysts for the Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2020 , 132, 17641-17646	3.6	3
52	Recent advances in nanostructured transition metal nitrides for fuel cells. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 20803-20818	13	14
51	Antiperovskite Nitrides CuNCoV: Highly Efficient and Durable Electrocatalysts for the Oxygen-Evolution Reaction. <i>Nano Letters</i> , 2019 , 19, 7457-7463	11.5	37
50	Glucose-derived carbon supported well-dispersed CrN as competitive oxygen reduction catalysts in acidic medium. <i>Electrochimica Acta</i> , 2019 , 314, 202-211	6.7	7
49	Dendrite-Free Composite Li Anode Assisted by Ag Nanoparticles in a Wood-Derived Carbon Frame. <i>ACS Applied Materials & Description of the ACS Applied & De</i>	9.5	23

48	Superior lithium-storage properties derived from a high pseudocapacitance behavior for a peony-like holey Co3O4 anode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8327-8334	13	29
47	An Investigation into the Charge-Storage Mechanism of MnO@Graphite as Anode for Lithium-Ion Batteries at Low Temperature. <i>ChemElectroChem</i> , 2019 , 6, 2248-2253	4.3	17
46	Structurally Ordered Fe3Pt Nanoparticles on Robust Nitride Support as a High Performance Catalyst for the Oxygen Reduction Reaction. <i>Advanced Energy Materials</i> , 2019 , 9, 1803040	21.8	68
45	Nitrogen-doped carbon nanoflower with superior ORR performance in both alkaline and acidic electrolyte and enhanced durability. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 4311-4320	6.7	24
44	Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction. <i>ACS Applied Materials & Dispersed</i> , 10, 353	o ² 3537	.37
43	An efficient carbon catalyst supports with mesoporous graphene-like morphology. <i>Journal of Porous Materials</i> , 2018 , 25, 913-921	2.4	2
42	CoreBhell-Structured Low-Platinum Electrocatalysts for Fuel Cell Applications. <i>Electrochemical Energy Reviews</i> , 2018 , 1, 324-387	29.3	58
41	Formation of a Tubular Assembly by Ultrathin Ti0.8Co0.2N Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Hydrogen/MetalAir Fuel Cells. <i>ACS Catalysis</i> , 2018 , 8, 8970-8975	13.1	115
40	Nanoconfined Nitrogen-Doped Carbon-Coated Hierarchical TiCoN Composites with Enhanced ORR Performance. <i>ChemElectroChem</i> , 2018 , 5, 2041-2049	4.3	10
39	Design of a Multispherical Cavity Carbon with In Situ Silica Modifications and Its Self-Humidification Application on Fuel Cell Anode Support. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800314	4.6	5
38	Three-Dimensional Biocarbon Framework Coupled with Uniformly Distributed FeSe Nanoparticles Derived from Pollen as Bifunctional Electrocatalysts for Oxygen Electrode Reactions. <i>ACS Applied Materials & Design Coupled With Uniformly Distributed FeSe Nanoparticles Design Coupled With Uniformly Design Coupled With U</i>	9.5	18
37	A renewable wood-derived cathode for LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 14291-	14298	24
36	A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5829-583	3 7 3	70
35	Well-Defined ZIF-Derived Fe-N Codoped Carbon Nanoframes as Efficient Oxygen Reduction Catalysts. <i>ACS Applied Materials & District States</i> , 2017, 9, 9699-9709	9.5	134
34	Randomly oriented NiP/nanofiber/nanotube composite prepared by electrolessly plated nickelphosphorus alloys for fuel cell applications. <i>Journal of Materials Science</i> , 2017 , 52, 8432-8443	4.3	9
33	A Co-doped porous niobium nitride nanogrid as an effective oxygen reduction catalyst. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 14278-14285	13	31
32	From Chlorella to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. <i>ACS Applied Materials & Material</i>	9.5	47
31	IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes as an efficient cathode catalyst for high-performance Li-O2 batteries. <i>Ceramics International</i> , 2017 , 43, 14082-14089	5.1	38

30	High-performance membrane electrode assembly with multi-functional Pt/SnO2BiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 9197-9203	6.7	12
29	Transition Metal Nitride Coated with Atomic Layers of Pt as a Low-Cost, Highly Stable Electrocatalyst for the Oxygen Reduction Reaction. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1575-83	16.4	279
28	A coreShell Pd1Ru1Ni2@Pt/C catalyst with a ternary alloy core and Pt monolayer: enhanced activity and stability towards the oxygen reduction reaction by the addition of Ni. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 847-855	13	32
27	Effects of tailoring and dehydrated cross-linking on morphology evolution of ordered mesoporous carbons. <i>RSC Advances</i> , 2016 , 6, 19515-19521	3.7	8
26	Limitations and Improvement Strategies for Early-Transition-Metal Nitrides as Competitive Catalysts toward the Oxygen Reduction Reaction. <i>ACS Catalysis</i> , 2016 , 6, 6165-6174	13.1	81
25	Ultra-high-performance core-shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method. <i>Scientific Reports</i> , 2015 , 5, 11604	4.9	17
24	High-Performance, Ultralow Platinum Membrane Electrode Assembly Fabricated by In Situ Deposition of a Pt Shell Layer on Carbon-Supported Pd Nanoparticles in the Catalyst Layer Using a Facile Pulse Electrodeposition Approach. <i>ACS Catalysis</i> , 2015 , 5, 4318-4324	13.1	42
23	Pd nanoparticles decorating flower-like Co3O4 nanowire clusters to form an efficient, carbon/binder-free cathode for LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15626-15632	13	63
22	Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16801-16809	13	87
21	Photocatalytic Water Splitting Towards Hydrogen Production on Gold Nanoparticles (NPs) Entrapped in TiO2 Nanotubes. <i>Catalysis Letters</i> , 2015 , 145, 1771-1777	2.8	30
20	Ruthenium nanoparticles mounted on multielement co-doped graphene: an ultra-high-efficiency cathode catalyst for LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11224-11231	13	57
19	Nitrogen-doped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction. <i>Applied Catalysis B: Environmental</i> , 2015 , 165, 566-571	21.8	156
18	Facile one-pot approach to the synthesis of spherical mesoporous silica nanoflowers with hierarchical pore structure. <i>Applied Surface Science</i> , 2014 , 314, 7-14	6.7	23
17	Self-humidifying membrane electrode assembly prepared by adding microcrystalline cellulose in anode catalyst layer as preserve moisture. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 12842-12	848	7
16	Synthesis of three-dimensional Pd nanospheres decorated with a Pt monolayer for the oxygen reduction reaction. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 14018-14026	6.7	11
15	Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived From Polyaniline and Melamine for ORR Application. <i>ACS Catalysis</i> , 2014 , 4, 3797-3805	13.1	275
14	A pulse electrochemical deposition method to prepare membrane electrode assemblies with ultra-low anode Pt loadings through in situ construction of active coreEhell nanoparticles on an electrode. <i>Journal of Power Sources</i> , 2014 , 260, 27-33	8.9	21
13	Pulse electrodeposition to prepare coreBhell structured AuPt@Pd/C catalyst for formic acid fuel cell application. <i>Journal of Power Sources</i> , 2014 , 246, 659-666	8.9	24

LIST OF PUBLICATIONS

12	Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation. <i>Materials</i> , 2013 , 6, 2689-2700	3.5	16
11	Tuning the Catalytic Activity of [email@rotected] CoreBhell Nanoparticles for the Oxygen Reduction Reaction by Varying the Shell Thickness. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 1748-175	3 ^{3.8}	120
10	Immobilization of highly active Pd nano-catalysts on functionalized mesoporous silica supports using mercapto groups as anchoring sites and their catalytic performance for phenol hydrogenation. <i>Chinese Journal of Catalysis</i> , 2013 , 34, 1519-1526	11.3	8
9	High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction. <i>Scientific Reports</i> , 2013 , 3,	4.9	454
8	Binary oxide-doped Pt/RuO2BiOx/C catalyst with high performance and self-humidification capability: The promotion of ruthenium oxide. <i>Journal of Power Sources</i> , 2012 , 205, 201-206	8.9	12
7	Preparation of nitrogen-doped carbon nanotube arrays and their catalysis towards cathodic oxygen reduction in acidic and alkaline media. <i>Carbon</i> , 2012 , 50, 2620-2627	10.4	156
6	Pt?Ru/C catalysts synthesized by a two-stage polyol reduction process for methanol oxidation reaction. <i>Journal of Power Sources</i> , 2011 , 196, 10570-10575	8.9	17
5	Preparation and characterization of coreEhell structured catalysts using PtxPdy as active shell and nano-sized Ru as core for potential direct formic acid fuel cell application. <i>Electrochimica Acta</i> , 2011 , 56, 2024-2030	6.7	38
4	Platinum decorated Ru/C: Effects of decorated platinum on catalyst structure and performance for the methanol oxidation reaction. <i>Journal of Power Sources</i> , 2011 , 196, 54-61	8.9	21
3	Anodic oxidation of ethanol on core-shell structured Ru@PtPd/C catalyst in alkaline media. <i>Journal of Power Sources</i> , 2011 , 196, 6138-6143	8.9	55
2	Self-humidification of a PEM fuel cell using a novel Pt/SiO2/C anode catalyst. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 7874-7880	6.7	41
1	Biogelatin-Derived and N,S-Codoped 3D Network Carbon Materials Anchored with RuO2 as an Efficient Cathode for Rechargeable LiD2 Batteries. <i>Journal of Physical Chemistry C</i> ,	3.8	3