

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8327164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction. Scientific Reports, 2013, 3, .	1.6	514
2	Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived From Polyaniline and Melamine for ORR Application. ACS Catalysis, 2014, 4, 3797-3805.	5.5	351
3	Transition Metal Nitride Coated with Atomic Layers of Pt as a Low-Cost, Highly Stable Electrocatalyst for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2016, 138, 1575-1583.	6.6	348
4	Well-Defined ZIF-Derived Fe–N Codoped Carbon Nanoframes as Efficient Oxygen Reduction Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 9699-9709.	4.0	196
5	Inhibition of Polysulfide Shuttles in Li–S Batteries: Modified Separators and Solid‣tate Electrolytes. Advanced Energy Materials, 2021, 11, 2000779.	10.2	188
6	Nitrogen-doped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction. Applied Catalysis B: Environmental, 2015, 165, 566-571.	10.8	172
7	Preparation of nitrogen-doped carbon nanotube arrays and their catalysis towards cathodic oxygen reduction in acidic and alkaline media. Carbon, 2012, 50, 2620-2627.	5.4	167
8	Formation of a Tubular Assembly by Ultrathin Ti _{0.8} Co _{0.2} N Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Hydrogen–/Metal–Air Fuel Cells. ACS Catalysis, 2018, 8, 8970-8975.	5.5	147
9	Tuning the Catalytic Activity of Ru@Pt Core–Shell Nanoparticles for the Oxygen Reduction Reaction by Varying the Shell Thickness. Journal of Physical Chemistry C, 2013, 117, 1748-1753.	1.5	140
10	Limitations and Improvement Strategies for Early-Transition-Metal Nitrides as Competitive Catalysts toward the Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 6165-6174.	5.5	130
11	Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 16801-16809.	5.2	115
12	Advanced Atomically Dispersed Metal–Nitrogen–Carbon Catalysts Toward Cathodic Oxygen Reduction in PEM Fuel Cells. Advanced Energy Materials, 2021, 11, 2101222.	10.2	109
13	Structurally Ordered Fe ₃ Pt Nanoparticles on Robust Nitride Support as a High Performance Catalyst for the Oxygen Reduction Reaction. Advanced Energy Materials, 2019, 9, 1803040.	10.2	96
14	A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide. Journal of Materials Chemistry A, 2017, 5, 5829-5837.	5.2	93
15	Coupling hollow Fe3O4 nanoparticles with oxygen vacancy on mesoporous carbon as a high-efficiency ORR electrocatalyst for Zn-air battery. Journal of Colloid and Interface Science, 2020, 567, 410-418.	5.0	75
16	Core–Shell-Structured Low-Platinum Electrocatalysts for Fuel Cell Applications. Electrochemical Energy Reviews, 2018, 1, 324-387.	13.1	72
17	Pd nanoparticles decorating flower-like Co ₃ O ₄ nanowire clusters to form an efficient, carbon/binder-free cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 15626-15632.	5.2	67
18	High-Performance, Ultralow Platinum Membrane Electrode Assembly Fabricated by In Situ Deposition of a Pt Shell Layer on Carbon-Supported Pd Nanoparticles in the Catalyst Layer Using a Facile Pulse Electrodeposition Approach. ACS Catalysis, 2015, 5, 4318-4324.	5.5	64

Lı Du

#	Article	IF	CITATIONS
19	From <i>Chlorella</i> to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 32168-32178.	4.0	63
20	Anodic oxidation of ethanol on core-shell structured Ru@PtPd/C catalyst in alkaline media. Journal of Power Sources, 2011, 196, 6138-6143.	4.0	62
21	Antiperovskite Nitrides CuNCo _{3–<i>x</i>} V _{<i>x</i>} : Highly Efficient and Durable Electrocatalysts for the Oxygen-Evolution Reaction. Nano Letters, 2019, 19, 7457-7463.	4.5	62
22	Ruthenium nanoparticles mounted on multielement co-doped graphene: an ultra-high-efficiency cathode catalyst for Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 11224-11231.	5.2	61
23	Mesoporous carbon confined intermetallic nanoparticles as highly durable electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 15822-15828.	5.2	58
24	A Co-doped porous niobium nitride nanogrid as an effective oxygen reduction catalyst. Journal of Materials Chemistry A, 2017, 5, 14278-14285.	5.2	51
25	Self-humidification of a PEM fuel cell using a novel Pt/SiO2/C anode catalyst. International Journal of Hydrogen Energy, 2010, 35, 7874-7880.	3.8	50
26	Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction. ACS Applied Materials & amp; Interfaces, 2018, 10, 3530-3537.	4.0	48
27	IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes as an efficient cathode catalyst for high-performance Li-O2 batteries. Ceramics International, 2017, 43, 14082-14089.	2.3	46
28	Superior lithium-storage properties derived from a high pseudocapacitance behavior for a peony-like holey Co ₃ O ₄ anode. Journal of Materials Chemistry A, 2019, 7, 8327-8334.	5.2	45
29	Recent advances in nanostructured transition metal nitrides for fuel cells. Journal of Materials Chemistry A, 2020, 8, 20803-20818.	5.2	45
30	Preparation and characterization of core–shell structured catalysts using PtxPdy as active shell and nano-sized Ru as core for potential direct formic acid fuel cell application. Electrochimica Acta, 2011, 56, 2024-2030.	2.6	41
31	A core–shell Pd ₁ Ru ₁ Ni ₂ @Pt/C catalyst with a ternary alloy core and Pt monolayer: enhanced activity and stability towards the oxygen reduction reaction by the addition of Ni. Journal of Materials Chemistry A, 2016, 4, 847-855.	5.2	40
32	Compositionâ€Tunable Antiperovskite Cu _{<i>x</i>} In _{1â^'<i>x</i>} NNi ₃ as Superior Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 17488-17493.	7.2	39
33	A renewable wood-derived cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 14291-14298.	5.2	38
34	Photocatalytic Water Splitting Towards Hydrogen Production on Gold Nanoparticles (NPs) Entrapped in TiO2 Nanotubes. Catalysis Letters, 2015, 145, 1771-1777.	1.4	36
35	Co ₄ Nâ€Decorated 3D Woodâ€Derived Carbon Host Enables Enhanced Cathodic Electrocatalysis and Homogeneous Lithium Deposition for Lithium–Sulfur Full Cells. Small, 2022, 18, e2105664.	5.2	34
36	Nitrogen-doped carbon nanoflower with superior ORR performance in both alkaline and acidic electrolyte and enhanced durability. International Journal of Hydrogen Energy, 2018, 43, 4311-4320.	3.8	33

Lı Du

#	Article	IF	CITATIONS
37	Dendrite-Free Composite Li Anode Assisted by Ag Nanoparticles in a Wood-Derived Carbon Frame. ACS Applied Materials & Interfaces, 2019, 11, 18361-18367.	4.0	33
38	Hybrid Charge‣torage Route to Nb ₂ CT _x MXene as Anode for Sodiumâ€ŀon Batteries. ChemistrySelect, 2020, 5, 1186-1192.	0.7	32
39	Optimizing the Electronic Structure of Ordered Pt–Co–Ti Ternary Intermetallic Catalyst to Boost Acidic Oxygen Reduction. ACS Catalysis, 2022, 12, 7571-7578.	5.5	31
40	Pulse electrodeposition to prepare core–shell structured AuPt@Pd/C catalyst for formic acid fuel cell application. Journal of Power Sources, 2014, 246, 659-666.	4.0	30
41	Facile one-pot approach to the synthesis of spherical mesoporous silica nanoflowers with hierarchical pore structure. Applied Surface Science, 2014, 314, 7-14.	3.1	30
42	Three-Dimensional Biocarbon Framework Coupled with Uniformly Distributed FeSe Nanoparticles Derived from Pollen as Bifunctional Electrocatalysts for Oxygen Electrode Reactions. ACS Applied Materials & Interfaces, 2018, 10, 32133-32141.	4.0	29
43	An Investigation into the Charge‣torage Mechanism of MnO@Graphite as Anode for Lithiumâ€ŀon Batteries at Low Temperature. ChemElectroChem, 2019, 6, 2248-2253.	1.7	27
44	Platinum decorated Ru/C: Effects of decorated platinum on catalyst structure and performance for the methanol oxidation reaction. Journal of Power Sources, 2011, 196, 54-61.	4.0	24
45	A pulse electrochemical deposition method to prepare membrane electrode assemblies with ultra-low anode Pt loadings through in situ construction of active core–shell nanoparticles on an electrode. Journal of Power Sources, 2014, 260, 27-33.	4.0	24
46	Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method. Scientific Reports, 2015, 5, 11604.	1.6	21
47	Ptâ^§Ru/C catalysts synthesized by a two-stage polyol reduction process for methanol oxidation reaction. Journal of Power Sources, 2011, 196, 10570-10575.	4.0	20
48	High-performance membrane electrode assembly with multi-functional Pt/SnO2–SiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions. International Journal of Hydrogen Energy, 2016, 41, 9197-9203.	3.8	20
49	Nanoconfined Nitrogenâ€Đoped Carbonâ€Coated Hierarchical TiCoN Composites with Enhanced ORR Performance. ChemElectroChem, 2018, 5, 2041-2049.	1.7	19
50	Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation. Materials, 2013, 6, 2689-2700.	1.3	18
51	Robust InNCo _{3–<i>x</i>} Mn <i>_{<i>x</i>}</i> Nitride-Supported Pt Nanoparticles as High-Performance Bifunctional Electrocatalysts for Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 5293-5300.	2.5	13
52	Binary oxide-doped Pt/RuO2–SiOx/C catalyst with high performance and self-humidification capability: The promotion of ruthenium oxide. Journal of Power Sources, 2012, 205, 201-206.	4.0	12
53	Randomly oriented Ni–P/nanofiber/nanotube composite prepared by electrolessly plated nickel–phosphorus alloys for fuel cell applications. Journal of Materials Science, 2017, 52, 8432-8443.	1.7	12
54	Glucose-derived carbon supported well-dispersed CrN as competitive oxygen reduction catalysts in acidic medium. Electrochimica Acta, 2019, 314, 202-211.	2.6	12

Lı Du

#	Article	IF	CITATIONS
55	Recent Advances and Perspectives in Lithiumâ^'Sulfur Pouch Cells. Molecules, 2021, 26, 6341.	1.7	12
56	Immobilization of highly active Pd nano-catalysts on functionalized mesoporous silica supports using mercapto groups as anchoring sites and their catalytic performance for phenol hydrogenation. Chinese Journal of Catalysis, 2013, 34, 1519-1526.	6.9	11
57	Self-humidifying membrane electrode assembly prepared by adding microcrystalline cellulose in anode catalyst layer as preserve moisture. International Journal of Hydrogen Energy, 2014, 39, 12842-12848.	3.8	11
58	Synthesis of three-dimensional Pd nanospheres decorated with a Pt monolayer for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2014, 39, 14018-14026.	3.8	11
59	Ultrafast Carbothermal Shock Constructing Ni ₃ Fe _{1–<i>x</i>} Cr _{<i>x</i>} Intermetallic Integrated Electrodes for Efficient and Durable Overall Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 19524-19533.	4.0	10
60	Effects of tailoring and dehydrated cross-linking on morphology evolution of ordered mesoporous carbons. RSC Advances, 2016, 6, 19515-19521.	1.7	9
61	Enabling Scalable Polymer Electrolyte with Synergetic Ion Conductive Channels via a Two Stage Rheology Tuning UV Polymerization Strategy. Small, 2022, 18, e2202013.	5.2	9
62	Compositionâ€Tunable Antiperovskite Cu _{<i>x</i>} In _{1â^'<i>x</i>} NNi ₃ as Superior Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2020, 132, 17641-17646.	1.6	7
63	Biogelatin-Derived and N,S-Codoped 3D Network Carbon Materials Anchored with RuO ₂ as an Efficient Cathode for Rechargeable Li–O ₂ Batteries. Journal of Physical Chemistry C, 2021, 125, 21914-21921.	1.5	7
64	Design of a Multispherical Cavity Carbon with In Situ Silica Modifications and Its Selfâ€Humidification Application on Fuel Cell Anode Support. Advanced Materials Interfaces, 2018, 5, 1800314.	1.9	6
65	An Efficient Bifunctional Electrocatalyst of Phosphorous Carbon Co-doped MOFs. Nanoscale Research Letters, 2020, 15, 169.	3.1	3
66	An efficient carbon catalyst supports with mesoporous graphene-like morphology. Journal of Porous Materials, 2018, 25, 913-921.	1.3	2
67	A comparative study on the catalytic activities and stabilities of atomic-layered platinum on dispersed Ti0.9Cu0.1N nanoparticles supported by N-doped carbon nanotubes (N-CNTs) and reduced graphene oxide (N-rGO). International Journal of Hydrogen Energy, 2020, 45, 1857-1866.	3.8	2