Wen-Cheng Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8326920/publications.pdf

Version: 2024-02-01

394421 642732 2,390 23 19 23 citations g-index h-index papers 23 23 23 3528 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy and Environmental Science, 2020, 13, 3330-3360.	30.8	576
2	Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society, 2016, 138, 15825-15828.	13.7	399
3	From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. Journal of Materials Chemistry A, 2013, 1, 10592.	10.3	255
4	Highâ€Voltage Zincâ€Ion Batteries: Design Strategies and Challenges. Advanced Functional Materials, 2021, 31, 2010213.	14.9	123
5	Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy and Environmental Science, 2018, 11, 559-565.	30.8	119
6	Organic salt-assisted liquid-phase exfoliation of graphite to produce high-quality graphene. Chemical Physics Letters, 2013, 568-569, 198-201.	2.6	108
7	Wet Chemistry Synthesis of Multidimensional Nanocarbon–Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 3584-3590.	8.0	108
8	Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10830.	10.3	107
9	Transparent Polymeric Strain Sensors for Monitoring Vital Signs and Beyond. ACS Applied Materials & Amp; Interfaces, 2018, 10, 3895-3901.	8.0	85
10	Mixedâ€Valence Copper Selenide as an Anode for Ultralong Lifespan Rockingâ€Chair Znâ€Ion Batteries: An Insight into its Intercalation/Extraction Kinetics and Charge Storage Mechanism. Advanced Functional Materials, 2021, 31, 2005092.	14.9	76
11	Enable commercial Zinc powders for dendrite-free Zinc anode with improved utilization rate by pristine graphene hybridization. Energy Storage Materials, 2022, 45, 465-473.	18.0	76
12	Rational-design of polyaniline cathode using proton doping strategy by graphene oxide for enhanced aqueous zinc-ion batteries. Journal of Power Sources, 2020, 450, 227716.	7.8	71
13	Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. Chemical Science, 2019, 10, 1244-1253.	7.4	51
14	Graphene oxide in aqueous and nonaqueous media: Dispersion behaviour and solution chemistry. Carbon, 2020, 158, 568-579.	10.3	50
15	Pristine graphene for advanced electrochemical energy applications. Journal of Power Sources, 2019, 437, 226899.	7.8	31
16	Interlayer Chemistry of Layered Electrode Materials in Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2007358.	14.9	28
17	Sulfur Confined in Subâ€Nanometerâ€Sized 2 D Graphene Interlayers and Its Electrochemical Behavior in Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2016, 11, 2690-2694.	3.3	25
18	A surfactant-free water-processable all-carbon composite and its application to supercapacitor. Electrochimica Acta, 2014, 146, 353-358.	5.2	23

#	Article	IF	CITATIONS
19	A simple and practical route to prepare useable pristine graphene for electrochemical applications. Chemical Engineering Journal, 2015, 262, 658-664.	12.7	20
20	Organic dispersions of graphene oxide with arbitrary concentrations and improved chemical stability. Chemical Communications, 2017, 53, 11005-11007.	4.1	20
21	High-quality graphene films and nitrogen-doped organogels prepared from the organic dispersions of graphene oxide. Carbon, 2018, 129, 15-20.	10.3	18
22	Twoâ€Dimensional Germanium Sulfide Nanosheets as an Ultraâ€Stable and High Capacity Anode for Lithium Ion Batteries. Chemistry - A European Journal, 2020, 26, 6554-6560.	3.3	13
23	Fast electron transfer kinetics on electrodes composed of graphene oxide †patched†with direct exfoliated pristine graphene nanosheets. Chemical Physics Letters, 2014, 595-596, 1-5.	2.6	8