

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8326579/publications.pdf Version: 2024-02-01

		87723	138251
127	4,233	38	58
papers	citations	h-index	g-index
135	135	135	1805
all docs	docs citations	times ranked	citing authors

Тим Гт

#	Article	IF	CITATIONS
1	Potential energy surfaces from high fidelity fitting of <i>ab initio</i> points: the permutation invariant polynomial - neural network approach. International Reviews in Physical Chemistry, 2016, 35, 479-506.	0.9	316
2	Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems. Journal of Chemical Physics, 2013, 139, 204103.	1.2	269
3	High-Fidelity Potential Energy Surfaces for Gas-Phase and Gas–Surface Scattering Processes from Machine Learning. Journal of Physical Chemistry Letters, 2020, 11, 5120-5131.	2.1	127
4	Mode selectivity in methane dissociative chemisorption on Ni(111). Chemical Science, 2013, 4, 3249.	3.7	115
5	Communication: A chemically accurate global potential energy surface for the HO + CO → H + CO2 reaction. Journal of Chemical Physics, 2012, 136, 041103.	1.2	102
6	Imaging Dynamics on the F + H ₂ O → HF + OH Potential Energy Surfaces from Wells to Barriers. Science, 2014, 343, 396-399.	6.0	93
7	From ab Initio Potential Energy Surfaces to State-Resolved Reactivities: X + H2O ↔ HX + OH [X = F, Cl, and O(3P)] Reactions. Journal of Physical Chemistry A, 2015, 119, 4667-4687.	1.1	90
8	Mode Selectivity for a "Central―Barrier Reaction: Eight-Dimensional Quantum Studies of the O(³ P) + CH ₄ → OH + CH ₃ Reaction on an Ab Initio Potential Energy Surface. Journal of Physical Chemistry Letters, 2012, 3, 3776-3780.	2.1	87
9	High-Level, First-Principles, Full-Dimensional Quantum Calculation of the Ro-vibrational Spectrum of the Simplest Criegee Intermediate (CH ₂ OO). Journal of Physical Chemistry Letters, 2014, 5, 2364-2369.	2.1	86
10	Reactant Vibrational Excitations Are More Effective than Translational Energy in Promoting an Early-Barrier Reaction FÂ+ÂH ₂ O → HFÂ+ÂOH. Journal of the American Chemical Society, 2013, 135, 982-985.	6.6	77
11	Rate coefficients and kinetic isotope effects of the X + CH4 → CH3 + HX (X = H, D, Mu) reactions from ring polymer molecular dynamics. Journal of Chemical Physics, 2013, 138, 094307.	1.2	72
12	A permutationally invariant full-dimensional <i>ab initio</i> potential energy surface for the abstraction and exchange channels of the H + CH4 system. Journal of Chemical Physics, 2015, 142, 204302.	1.2	71
13	An <i>ab initio</i> based full-dimensional global potential energy surface for FH2O(X2A′) and dynamics for the F + H2O → HF + HO reaction. Journal of Chemical Physics, 2012, 137, 094304.	1.2	70
14	Feshbach resonances in the exit channel of the F + CH3OH → HF + CH3O reaction ob transition-state spectroscopy. Nature Chemistry, 2017, 9, 950-955.	oserved u	sing 70
15	Explicitly correlated MRCI-F12 potential energy surfaces for methane fit with several permutation invariant schemes and full-dimensional vibrational calculations. Molecular Physics, 2015, 113, 1823-1833.	0.8	63
16	Exceptional levofloxacin removal using biochar-derived porous carbon sheets: Mechanisms and density-functional-theory calculation. Chemical Engineering Journal, 2020, 387, 124103.	6.6	63
17	Quantum and quasi-classical dynamics of the OH + CO → H + CO2 reaction on a new permutationally invariant neural network potential energy surface. Journal of Chemical Physics, 2014, 140, 044327.	1.2	60
18	Enhancement of bimolecular reactivity by a pre-reaction van der Waals complex: the case of F + H2O → HF + HO. Chemical Science, 2013, 4, 629-632.	3.7	57

#	Article	IF	CITATIONS
19	Effects of reactant internal excitation and orientation on dissociative chemisorption of H2O on Cu(111): Quasi-seven-dimensional quantum dynamics on a refined potential energy surface. Journal of Chemical Physics, 2013, 138, 044704.	1.2	57
20	Communication: An accurate full 15 dimensional permutationally invariant potential energy surface for the OH + CH4 → H2O + CH3 reaction. Journal of Chemical Physics, 2015, 143, 221103.	1.2	56
21	Accurate Determination of Barrier Height and Kinetics for the F + H ₂ 0 → HF + OH Reaction. Journal of Physical Chemistry A, 2013, 117, 8864-8872.	1.1	53
22	A nine-dimensional global potential energy surface for NH ₄ (X ² A ₁) and kinetics studies on the H + NH ₃ ↔ H ₂ + NH ₂ reaction. Physical Chemistry Chemical Physics, 2014, 16, 6753-6763.	1.3	52
23	Energy-Saving Reduced-Pressure Extractive Distillation with Heat Integration for Separating the Biazeotropic Ternary Mixture Tetrahydrofuran–Methanol–Water. Industrial & Engineering Chemistry Research, 2018, 57, 13498-13510.	1.8	52
24	Quasi-Classical Trajectory Study of the HO + CO → H + CO ₂ Reaction on a New ab Initio Based Potential Energy Surface. Journal of Physical Chemistry A, 2012, 116, 5057-5067.	1.1	51
25	Communication: Covalent nature of Xâ⊂H2O (X = F, Cl, and Br) interactions. Journal of Chemical Physics, 2013, 138, 141102.	1.2	50
26	Improved design and optimization for separating tetrahydrofuran–water azeotrope through extractive distillation with and without heat integration by varying pressure. Chemical Engineering Research and Design, 2018, 133, 303-313.	2.7	50
27	Effects of reactant rotational excitation on reactivity: Perspectives from the sudden limit. Journal of Chemical Physics, 2014, 140, 034112.	1.2	49
28	Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks. Journal of Chemical Physics, 2016, 144, 224103.	1.2	48
29	Advances and New Challenges to Bimolecular Reaction Dynamics Theory. Journal of Physical Chemistry Letters, 2020, 11, 8844-8860.	2.1	46
30	Numerical simulation of solid-liquid suspension in a stirred tank with a dual punched rigid-flexible impeller. Advanced Powder Technology, 2017, 28, 2723-2734.	2.0	44
31	Spin-orbit corrected full-dimensional potential energy surfaces for the two lowest-lying electronic states of FH2O and dynamics for the F + H2O → HF + OH reaction. Journal of Chemical Physics, 2013, 138, 074309.	1.2	43
32	Kinetic and dynamic studies of the Cl(2 <i>P</i> u) + H2O(\$ilde X\$XÌf1 <i>A</i> 1) → HCl(\$ilde X\$XÌf1Σ+) + OH(\$ilde X\$XÌf2Î) reaction on an <i>ab initio</i> based full-dimensional global potential energy surface of the ground electronic state of ClH2O. Journal of Chemical Physics, 2013, 139, 074302.	1.2	42
33	Quantum Manifestation of Roaming in H + MgH → Mg + H ₂ : The Birth of Roaming Resonances. Journal of Physical Chemistry A, 2013, 117, 5052-5060.	1.1	41
34	Quantum Dynamics of the HO + CO → H + CO2 Reaction on an Accurate Potential Energy Surface. Journal of Physical Chemistry Letters, 2012, 3, 2482-2486.	2.1	40
35	Effects of reactant rotation on the dynamics of the OH + CH4 → H2O + CH3 reaction: A six-dimensional study. Journal of Chemical Physics, 2014, 140, 084307.	1.2	40
36	Accurate Global Potential Energy Surfaces for the H + CH ₃ OH Reaction by Neural Network Fitting with Permutation Invariance. Journal of Physical Chemistry A, 2020, 124, 5737-5745.	1.1	40

#	Article	IF	CITATIONS
37	Many-Body Permutationally Invariant Polynomial Neural Network Potential Energy Surface for N ₄ . Journal of Chemical Theory and Computation, 2020, 16, 4822-4832.	2.3	40
38	A critical comparison of neural network potentials for molecular reaction dynamics with exact permutation symmetry. Physical Chemistry Chemical Physics, 2019, 21, 9672-9682.	1.3	39
39	Infrared spectrum of the simplest Criegee intermediate CH2OO at resolution 0.25 cmâ^'1 and new assignments of bands 2 <i>ν</i> 9 and <i>ν</i> 5. Journal of Chemical Physics, 2015, 142, 214301.	1.2	37
40	Comprehensive Investigations of the Cl + CH ₃ OH → HCl + CH _{3 OH Reaction: Validation of Experiment and Dynamic Insights. CCS Chemistry, 2020, 2, 882-894.}	0/ 4.6	CH _{2<}
41	Design of impeller blades for efficient homogeneity of solid-liquid suspension in a stirred tank reactor. Advanced Powder Technology, 2017, 28, 2514-2523.	2.0	35
42	Computational Study of the Reaction Mechanism of the Methylperoxy Self-Reaction. Journal of Physical Chemistry A, 2011, 115, 13534-13541.	1.1	33
43	Mode Specificity in the OH + HO ₂ → H ₂ O + O ₂ Reaction: Enhancement of Reactivity by Exciting a Spectator Mode. Journal of the American Chemical Society, 2020, 142, 3331-3335.	6.6	33
44	Insights into the bond-selective reaction of Cl + HOD(n _{OH}) → HCl + OD. Physical Chemistry Chemical Physics, 2015, 17, 4259-4267.	1.3	32
45	Symmetry forbidden vibronic spectra and internal conversion in benzene. Physical Chemistry Chemical Physics, 2010, 12, 14967.	1.3	31
46	Analysis of heat integration, intermediate reboiler and vapor recompression for the extractive distillation of ternary mixture with two binary azeotropes. Chemical Engineering and Processing: Process Intensification, 2019, 142, 107546.	1.8	31
47	Quasi-classical trajectory studies on the full-dimensional accurate potential energy surface for the OH + H2O = H2O + OH reaction. Physical Chemistry Chemical Physics, 2017, 19, 17718-17725.	1.3	30
48	Anomalous kinetics of the reaction between OH and HO ₂ on an accurate triplet state potential energy surface. Physical Chemistry Chemical Physics, 2019, 21, 12667-12675.	1.3	30
49	Quasi-classical Trajectory Study of F+H2O→HF+OH Reaction: Influence of Barrier Height, Reactant Rotational Excitation, and Isotopic Substitution. Chinese Journal of Chemical Physics, 2013, 26, 627-634.	0.6	29
50	Mode Specificity and Product Energy Disposal in Unimolecular Reactions: Insights from the Sudden Vector Projection Model. Journal of Physical Chemistry A, 2014, 118, 2419-2425.	1.1	29
51	display="inline"> <mml:mi mathvariant="bold">H</mml:mi> <mml:mo mathvariant="bold">+<mml:mub><mml:mi>CO</mml:mi><mml:mn>2</mml:mn>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup>HOCO<mml:mo>â^^</mml:mo></mml:msup>Pho</mml:mub></mml:mo 	ml:math>ii 2.9 otodetachr	n <mml:math 28 ment.</mml:math

52	Full-dimensional global potential energy surfaces describing abstraction and exchange for the H + H2S reaction. Journal of Chemical Physics, 2016, 145, 014303.	1.2	28

53	Rate Coefficient for the ⁴ Heμ + CH ₄ Reaction at 500 K: Comparison between Theory and Experiment. Journal of Physical Chemistry B, 2016, 120, 1641-1648.	1.2	28
54	HCl–H ₂ O dimer: an accurate full-dimensional potential energy surface and fully coupled quantum calculations of intra- and intermolecular vibrational states and frequency shifts. Physical Chemistry Chemical Physics, 2021, 23, 7101-7114.	1.3	28

#	Article	IF	CITATIONS
55	Final state-resolved mode specificity in HX + OH → X + H ₂ O (X = F and Cl) reactions: A quasi-classical trajectory study. Journal of Chemical Physics, 2015, 142, 084314.	1.2	27
56	Iron cation catalyzed reduction of N2O by CO: gas-phase temperature dependent kinetics. Physical Chemistry Chemical Physics, 2013, 15, 11257.	1.3	26
57	An experimental and theoretical study on rotational constants of vibrationally excited CH2OO. Chemical Physics Letters, 2015, 621, 129-133.	1.2	25
58	A new ab initio based global HOOH(13A″) potential energy surface for the O(3P) + H2O(X1A1) ↔ OH(X2Î) + OH(X2Î) reaction. Journal of Chemical Physics, 2013, 138, 194304.	1.2	24
59	Stereodynamical control of product branching in multi-channel barrierless hydrogen abstraction of CH ₃ OH by F. Chemical Science, 2019, 10, 7994-8001.	3.7	24
60	Energy transfer between vibrationally excited carbon monoxide based on a highly accurate six-dimensional potential energy surface. Journal of Chemical Physics, 2020, 153, 054310.	1.2	24
61	Quasi-classical trajectory study of the H + CO2 → HO + CO reaction on a new ab initio based potential energy surface. Journal of Chemical Physics, 2012, 137, 024308.	1.2	23
62	Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system. Journal of Chemical Physics, 2015, 143, 214304.	1.2	23
63	Capture of the Sulfur Monoxide–Hydroxyl Radical Complex. Journal of the American Chemical Society, 2020, 142, 2175-2179.	6.6	23
64	Potential energy surfaces for high-energy N + O2 collisions. Journal of Chemical Physics, 2021, 154, 084304.	1.2	23
65	Nine-dimensional quantum dynamics study of the H ₂ + NH ₂ → H + NH ₃ reaction: a rigorous test of the sudden vector projection model. Physical Chemistry Chemical Physics, 2014, 16, 17770.	1.3	22
66	Mode specific dynamics in the H2 + SH → H + H2S reaction. Physical Chemistry Chemical Physics, 2016, 18, 29113-29121.	1.3	21
67	Solid-liquid mixing performance in a stirred tank with a double punched rigid-flexible impeller coupled with a chaotic motor. Chemical Engineering and Processing: Process Intensification, 2017, 118, 37-46.	1.8	21
68	An accurate potential energy surface and ring polymer molecular dynamics study of the Cl + CH ₄ → HCl + CH ₃ reaction. Physical Chemistry Chemical Physics, 2020, 22, 344-353.	1.3	21
69	Full-dimensional characterization of photoelectron spectra of HOCOâ^' and DOCOâ^' and tunneling facilitated decay of HOCO prepared by anion photodetachment. Journal of Chemical Physics, 2014, 140, 184314.	1.2	20
70	Mode specificity in the HF + OH → F + H2O reaction. Journal of Chemical Physics, 2014, 141, 164316.	1.2	19
71	Imaging a multidimensional multichannel potential energy surface: Photodetachment of Hâ^'(NH3) and NH4â^'. Journal of Chemical Physics, 2016, 144, 244311.	1.2	19
72	Intensification of chaotic mixing in a stirred tank with a punched rigid-flexible impeller and a chaotic motor. Chemical Engineering and Processing: Process Intensification, 2017, 122, 1-9.	1.8	19

#	Article	IF	CITATIONS
73	Tracking the energy flow in the hydrogen exchange reaction OH + H ₂ O → H ₂ O + OH. Physical Chemistry Chemical Physics, 2018, 20, 12543-12556.	1.3	19
74	Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction. Journal of Chemical Physics, 2017, 146, 124303.	1.2	18
75	Combined Experimental–Theoretical Study of the OH + CO → H + CO ₂ Reaction Dynamics. Journal of Physical Chemistry Letters, 2018, 9, 1229-1236.	2.1	18
76	Bouncing off walls – widths of exit channels from shallow minima can dominate selectivity control. Chemical Science, 2020, 11, 9937-9944.	3.7	17
77	CO ₂ Vibrational State Distributions From Quasi-Classical Trajectory Studies of the HO + CO → H + CO ₂ Reaction and H + CO ₂ Inelastic Collision. Journal of Physical Chemistry A, 2013, 117, 11648-11654.	1.1	16
78	Effects of vibrational excitation on the F + H ₂ O → HF + OH reaction: dissociative photodetachment of overtone-excited [F–H–OH] ^{â^'} . Chemical Science, 2017, 8, 7821-7833.	3.7	16
79	Thermal Rate Coefficients and Kinetic Isotope Effects for the Reaction OH + CH ₄ → H ₂ O + CH ₃ on an ab Initio-Based Potential Energy Surface. Journal of Physical Chemistry A, 2018, 122, 2645-2652.	1.1	16
80	Full-Dimensional Potential Energy Surface and Ro-vibrational Levels of Dioxirane. Journal of Physical Chemistry A, 2016, 120, 2991-2998.	1.1	15
81	Mode specificity in the OH + CHD3 reaction: Reduced-dimensional quantum and quasi-classical studies on an ab initio based full-dimensional potential energy surface. Journal of Chemical Physics, 2016, 144, 164303.	1.2	15
82	Permutation-Invariant-Polynomial Neural-Network-Based Δ-Machine Learning Approach: A Case for the HO ₂ Self-Reaction and Its Dynamics Study. Journal of Physical Chemistry Letters, 2022, 13, 4729-4738.	2.1	15
83	An accurate multi-channel multi-reference full-dimensional global potential energy surface for the lowest triplet state of H2O2. Physical Chemistry Chemical Physics, 2016, 18, 29825-29835.	1.3	14
84	Ring-polymer molecular dynamical calculations for the F + HCl → HF + Cl reaction on the ground 1 ² A′ potential energy surface. Physical Chemistry Chemical Physics, 2016, 18, 32031-32041.	1.3	14
85	An accurate full-dimensional permutationally invariant potential energy surface for the interaction between H2O and CO. Physical Chemistry Chemical Physics, 2019, 21, 24101-24111.	1.3	14
86	Mode specificity of a multi-channel reaction prototype: F + CH3OH → HF + CH3O/C Chemistry Accounts, 2020, 139, 1.	:H2OH. Th	eoretical
87	Vibrational mode-specificity in the dynamics of the Cl + C2H6 → HCl + C2H5 reaction. Journal of Chemical Physics, 2021, 155, 114303.	1.2	14
88	Kinetic study of the formation of triphenylene from the condensation of C12H10+C6H5. Computational and Theoretical Chemistry, 2012, 985, 1-7.	1.1	13
89	Kinetics and dynamics of the C(³ P) + H ₂ O reaction on a full-dimensional accurate triplet state potential energy surface. Physical Chemistry Chemical Physics, 2017, 19, 23280-23288.	1.3	13
90	Classical Trajectory Study of Collision Energy Transfer between Ne and C ₂ H ₂ on a Full Dimensional Accurate Potential Energy Surface. Journal of Physical Chemistry A, 2018, 122, 1521-1530.	1.1	13

#	Article	IF	CITATIONS
91	Mode specific dynamics of the H2 + CH3 → H + CH4 reaction studied using quasi-classical trajectory and eight-dimensional quantum dynamics methods. Journal of Chemical Physics, 2015, 143, 154307.	1.2	12
92	Rotational excitation of the interstellar NH2 radical by H2. Journal of Chemical Physics, 2017, 146, 064309.	1.2	12
93	Rate coefficients and branching ratio for multi-channel hydrogen abstractions from CH3OH by F. Chinese Journal of Chemical Physics, 2019, 32, 84-88.	0.6	12
94	An accurate full-dimensional potential energy surface for the reaction OH + SO → H + SO ₂ . Physical Chemistry Chemical Physics, 2021, 23, 487-497.	1.3	12
95	Unimolecular decomposition mechanism of vinyl alcohol by computational study. Theoretical Chemistry Accounts, 2011, 128, 341-348.	0.5	11
96	Theoretical Study for the Ground Electronic State of the Reaction OH + SO → H + SO2. Journal of Physical Chemistry A, 2019, 123, 7218-7227.	1.1	11
97	Quantitative Dynamics of the N ₂ O + C ₂ H ₂ → Oxadiazole Reaction: A Model for 1,3-Dipolar Cycloadditions. ACS Omega, 2020, 5, 23343-23350.	1.6	11
98	Multistructural Variational Reaction Kinetics of the Simplest Unsaturated Methyl Ester: H-Abstraction from Methyl Acrylate by H, OH, CH ₃ , and HO ₂ Radicals. Journal of Physical Chemistry A, 2021, 125, 5103-5116.	1.1	11
99	DCl–H ₂ 0, HCl–D ₂ 0, and DCl–D ₂ 0 Dimers: Inter- and Intramolecular Vibrational States and Frequency Shifts from Fully Coupled Quantum Calculations on a Full-Dimensional Neural Network Potential Energy Surface. Journal of Physical Chemistry A, 2021, 125, 6437-6449.	1.1	11
100	A theoretical search for stable bent and linear structures of low-lying electronic states of the titanium dioxide (TiO2) molecule. RSC Advances, 2011, 1, 1228.	1.7	10
101	Near Spectroscopically Accurate Ab Initio Potential Energy Surface for NH ₄ ⁺ and Variational Calculations of Low-Lying Vibrational Levels. Journal of Physical Chemistry A, 2015, 119, 3400-3406.	1.1	10
102	The Triplet Hydroxyl Radical Complex of Phosphorus Monoxide. Angewandte Chemie - International Edition, 2020, 59, 21949-21953.	7.2	10
103	Hemibond complexes between H2S and free radicals (F, Cl, Br, and OH). Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	9
104	Vibrational energy levels of the simplest Criegee intermediate (CH2OO) from full-dimensional Lanczos, MCTDH, and MULTIMODE calculations. Journal of Chemical Physics, 2015, 143, 084311.	1.2	9
105	Validating experiments for the reaction H ₂ + NH ₂ ^{â^'} by dynamical calculations on an accurate full-dimensional potential energy surface. Physical Chemistry Chemical Physics, 2022, 24, 10160-10167.	1.3	9
106	State-Resolved Quantum Dynamics of Photodetachment of HCO ₂ ^{â^`} /DCO ₂ ^{â^`} on an Accurate Global Potential Energy Surface. Journal of Physical Chemistry A, 2015, 119, 7316-7324.	1.1	8
107	Photoelectron–Photofragment Coincidence Studies on the Dissociation Dynamics of the OH–CH ₄ Complex. Journal of Physical Chemistry A, 2019, 123, 4825-4833.	1.1	8
108	A Full-Dimensional Potential Energy Surface and Dynamics of the Multichannel Reaction between H and HO ₂ . Journal of Physical Chemistry A, 2021, 125, 1540-1552.	1.1	7

#	Article	IF	CITATIONS
109	A comparison study of the HÂ+ÂCH4 and HÂ+ÂSiH4 reactions with eight-dimensional quantum dynamics: normal mode versus local mode in the reactant molecule vibration. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	6
110	Ring-polymer molecular dynamics studies of thermal rate coefficients for reaction F + H2O → HF + OH. Chinese Journal of Chemical Physics, 2019, 32, 313-318.	0.6	6
111	Kinetic study of the OH + HO ₂ → H ₂ O + O ₂ reaction using ring polymer molecular dynamics and quantum dynamics. Physical Chemistry Chemical Physics, 2020, 22, 23657-23664.	1.3	6
112	Theoretical Investigations for Kinetics of the Chemical Reactions: H + SiCl _{<i>x</i>} (<i>x</i> = 1, 2, 3). Journal of Physical Chemistry A, 2022, 126, 1689-1700.	1.1	6
113	Quantum dynamical investigation of product state distributions of the F + CH3OH → HF + CH3O reaction via photodetachment of the Fâ^'(HOCH3) anion. Journal of Chemical Physics, 2019, 150, 044301.	1.2	5
114	Nucleophilic Aromatic Substitution of 5-Bromo-1,2,3-triazines with Phenols. Journal of Organic Chemistry, 2022, 87, 2590-2600.	1.7	4
115	CFD Simulation of Solid Suspension in a Stirred Reactor Driven by a Dual Punched Rigid-Flexible Impeller. International Journal of Chemical Reactor Engineering, 2018, 16, .	0.6	3
116	Kinetics studies of the F + HCl → HF + Cl reaction on an accurate potential energy surface. Chemical Physics Letters, 2018, 694, 93-101.	1.2	3
117	Numerical Simulation of Gas-Liquid Dispersion in A Stirred Tank Agitated by Punched Rigid-Flexible Impeller. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	3
118	Quasi-classical dynamics investigations of the F + D 2 O → DF + OD reaction on a full dimensiona potential energy surface. Computational and Theoretical Chemistry, 2018, 1130, 1-5.	l accurate 1.1	2
119	Reaction pathways and kinetics study on a syngas combustion system: CO + HO2in an H2O environment. Physical Chemistry Chemical Physics, 2020, 22, 5797-5806.	1.3	2
120	Calculation of Transport Parameters Using ab initio and AMOEBA Polarizable Force Field Methods. Journal of Physical Chemistry A, 2021, 125, 4918-4927.	1.1	2
121	Vibrational energy pooling <i>via</i> collisions between asymmetric stretching excited CO ₂ : a quasi-classical trajectory study on an accurate full-dimensional potential energy surface. Physical Chemistry Chemical Physics, 2021, 23, 24165-24174.	1.3	2
122	Ro-vibrational spectra of the simplest deuterated criegee intermediate CD2OO. Chinese Journal of Chemical Physics, 2020, 33, 65-68.	0.6	1
123	Dynamical investigations of the O(³ P) + H ₂ O reaction at high collision energies on an accurate full-dimensional potential energy surface. Molecular Physics, 2021, 119, .	0.8	1
124	Solvent reorganization energy of electron transfer by a modified ellipsoidal cavity model. Computational and Theoretical Chemistry, 2007, 819, 32-40.	1.5	0
125	Design of Impeller Blades for Intensification of Gas-Liquid Dispersion Process in a Stirred Tank. International Journal of Chemical Reactor Engineering, 2018, 16, .	0.6	0
126	Investigations on the Kinetics for the Reaction Class of Hydrogen Abstractions from Substituted Cyclohexane by Hydrogen Atom. Acta Chimica Sinica, 2012, 70, 585.	0.5	0

	Jur	N LI	
#	Article	IF	CITATIONS
127	Tunneling in Unimolecular and Bimolecular Reactions. Physical Chemistry in Action, 2014, , 59-80.	0.1	0