
Anabela Cordeiro-Da-Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8326476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
2	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	12.2	3,973
3	Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano, 2016, 10, 3886-3899.	14.6	397
4	Regulation of immunity during visceral Leishmania infection. Parasites and Vectors, 2016, 9, 118.	2.5	188
5	Uptake studies in rat Peyer's patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination. Journal of Controlled Release, 2006, 114, 348-358.	9.9	164
6	Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 405-416.	4.3	149
7	A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase. Nature Medicine, 2000, 6, 890-897.	30.7	138
8	Solid lipid nanoparticles as intracellular drug transporters: An investigation of the uptake mechanism and pathway. International Journal of Pharmaceutics, 2012, 430, 216-227.	5.2	137
9	Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. European Journal of Pharmaceutical Sciences, 2007, 32, 278-290.	4.0	109
10	SIR2-Deficient <i>Leishmania infantum</i> Induces a Defined IFN-Î ³ /IL-10 Pattern That Correlates with Protection. Journal of Immunology, 2007, 179, 3161-3170.	0.8	102
11	Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. International Immunopharmacology, 2008, 8, 1773-1780.	3.8	97
12	Leishmania infantum Modulates Host Macrophage Mitochondrial Metabolism by Hijacking the SIRT1-AMPK Axis. PLoS Pathogens, 2015, 11, e1004684.	4.7	96
13	Advances and perspectives in Leishmania cell based drug-screening procedures. Parasitology International, 2007, 56, 3-7.	1.3	95
14	Canine visceral leishmaniasis: Diagnosis and management of the reservoir living among us. PLoS Neglected Tropical Diseases, 2018, 12, e0006082.	3.0	95
15	Proinflammatory Environment Dictates the IL-17–Producing Capacity of Human Invariant NKT Cells. Journal of Immunology, 2011, 186, 5758-5765.	0.8	90
16	Complementary antioxidant defense by cytoplasmic and mitochondrial peroxiredoxins in Leishmania infantum. Free Radical Biology and Medicine, 2002, 33, 1552-1562.	2.9	89
17	Impact of Continuous Axenic Cultivation in Leishmania infantum Virulence. PLoS Neglected Tropical Diseases, 2012, 6, e1469.	3.0	88
18	Impairment of T Cell Function in Parasitic Infections. PLoS Neglected Tropical Diseases, 2014, 8, e2567.	3.0	80

#	Article	IF	CITATIONS
19	Deception and Manipulation: The Arms of Leishmania, a Successful Parasite. Frontiers in Immunology, 2014, 5, 480.	4.8	80
20	Targeted disruption of cytosolic SIR2 deacetylase discloses its essential role in Leishmania survival and proliferation. Gene, 2005, 363, 85-96.	2.2	73
21	Two linked genes of Leishmania infantum encode tryparedoxins localised to cytosol and mitochondrion. Molecular and Biochemical Parasitology, 2004, 136, 137-147.	1.1	65
22	Rapamycin Combined with TGF-β Converts Human Invariant NKT Cells into Suppressive Foxp3+ Regulatory Cells. Journal of Immunology, 2012, 188, 624-631.	0.8	59
23	TLR2-Induced IL-10 Production Impairs Neutrophil Recruitment to Infected Tissues during Neonatal Bacterial Sepsis. Journal of Immunology, 2013, 191, 4759-4768.	0.8	59
24	Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Communications Biology, 2022, 5, 305.	4.4	59
25	Effect of abietane diterpenes from Plectranthus grandidentatus on T- and B-lymphocyte proliferation. Bioorganic and Medicinal Chemistry, 2004, 12, 217-223.	3.0	58
26	Live attenuated Leishmania vaccines: a potential strategic alternative. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 123-126.	2.3	51
27	In vitro study of P-glycoprotein induction as an antidotal pathway to prevent cytotoxicity in Caco-2 cells. Archives of Toxicology, 2011, 85, 315-326.	4.2	51
28	Differential roles of PI3-Kinase, MAPKs and NF-κB on the manipulation of dendritic cell Th1/Th2 cytokine/chemokine polarizing profile. Molecular Immunology, 2009, 46, 2481-2492.	2.2	49
29	Bisnaphthalimidopropyl Derivatives as Inhibitors of <i>Leishmania</i> SIR2 Related Proteinâ€1. ChemMedChem, 2010, 5, 140-147.	3.2	49
30	Activation of Phosphatidylinositol 3-Kinase/Akt and Impairment of Nuclear Factor-κB. American Journal of Pathology, 2010, 177, 2898-2911.	3.8	48
31	Synthesis and anti-parasitic activity of a novel quinolinone–chalcone series. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6436-6441.	2.2	48
32	Dual Role of the Leishmania major Ribosomal Protein S3a Homologue in Regulation of T- and B-Cell Activation. Infection and Immunity, 2001, 69, 6588-6596.	2.2	47
33	The <i>Leishmania</i> nicotinamidase is essential for NAD ⁺ production and parasite proliferation. Molecular Microbiology, 2011, 82, 21-38.	2.5	47
34	Surface functionalization of polymeric nanospheres modulates macrophage activation: relevance in Leishmaniasis therapy. Nanomedicine, 2015, 10, 387-403.	3.3	47
35	Current and Future Chemotherapy for Chagas Disease. Current Medicinal Chemistry, 2015, 22, 4293-4312.	2.4	45
36	Induction of lymphocytes activated marker CD69 following exposure to chitosan and alginate biopolymers. International Journal of Pharmaceutics, 2007, 337, 254-264.	5.2	44

#	Article	IF	CITATIONS
37	Exoproteome dynamics in Leishmania infantum. Journal of Proteomics, 2013, 84, 106-118.	2.4	44
38	Immune Response Regulation byLeishmaniaSecreted and Nonsecreted Antigens. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-10.	3.0	43
39	Anti-Leishmania humoral and cellular immune responses in naturally infected symptomatic and asymptomatic dogs. Veterinary Immunology and Immunopathology, 2007, 117, 35-41.	1.2	41
40	Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs. Journal of Medicinal Chemistry, 2016, 59, 7598-7616.	6.4	41
41	Differential effects of polyamine derivative compounds against Leishmania infantum promastigotes and axenic amastigotes. International Journal for Parasitology, 2005, 35, 637-646.	3.1	40
42	The <i>Leishmania infantum</i> cytosolic SIR2-related protein 1 (LiSIR2RP1) is an NAD+-dependent deacetylase and ADP-ribosyltransferase. Biochemical Journal, 2008, 415, 377-386.	3.7	40
43	Characterization of the biology and infectivity of Leishmania infantum viscerotropic and dermotropic strains isolated from HIV+ and HIV- patients in the murine model of visceral leishmaniasis. Parasites and Vectors, 2013, 6, 122.	2.5	40
44	Abortive T Follicular Helper Development Is Associated with a Defective Humoral Response in Leishmania infantum-Infected Macaques. PLoS Pathogens, 2014, 10, e1004096.	4.7	40
45	Metabolic Variation during Development in Culture of Leishmania donovani Promastigotes. PLoS Neglected Tropical Diseases, 2011, 5, e1451.	3.0	39
46	Chroman-4-One Derivatives Targeting Pteridine Reductase 1 and Showing Anti-Parasitic Activity. Molecules, 2017, 22, 426.	3.8	39
47	Application of an Improved Enzyme-Linked Immunosorbent Assay Method for Serological Diagnosis of Canine Leishmaniasis. Journal of Clinical Microbiology, 2010, 48, 1866-1874.	3.9	38
48	<i>Leishmania</i> -Infected MHC Class Ilhigh Dendritic Cells Polarize CD4+ T Cells toward a Nonprotective T-bet+ IFN-Î ³ + IL-10+ Phenotype. Journal of Immunology, 2013, 191, 262-273.	0.8	37
49	Trypanosoma Cruzi-Induced Host Immune System Dysfunction: A Rationale for Parasite Immunosuppressive Factor(s) Encoding Gene Targeting. Journal of Biomedicine and Biotechnology, 2001, 1, 11-17.	3.0	36
50	Prevalence of antibodies to Leishmania infantum and Toxoplasma gondii in horses from the north of Portugal. Parasites and Vectors, 2013, 6, 178.	2.5	36
51	Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2017, 11, e0005951.	3.0	36
52	Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: <i>in vitro</i> and <i>in vivo</i> studies. Nanomedicine, 2012, 7, 1839-1849.	3.3	35
53	Antibodies against a Leishmania infantum peroxiredoxin as a possible marker for diagnosis of visceral leishmaniasis and for monitoring the efficacy of treatment. Immunology Letters, 2005, 101, 18-23.	2.5	34
54	Drug Discovery for Human African Trypanosomiasis: Identification of Novel Scaffolds by the Newly Developed HTS SYBR Green Assay for Trypanosoma brucei. Journal of Biomolecular Screening, 2015, 20, 70-81.	2.6	34

ANABELA CORDEIRO-DA-SILVA

#	Article	IF	CITATIONS
55	Histone deacetylase (HDAC) encoding gene expression in pancreatic cancer cell lines and cell sensitivity to HDAC inhibitors. Cancer Biology and Therapy, 2008, 7, 523-531.	3.4	33
56	Inhibition of lymphocyte proliferation by prenylated flavones: Artelastin as a potent inhibitor. Life Sciences, 2003, 73, 2321-2334.	4.3	32
57	Effect of anti-inflammatory drugs on splenocyte membrane fluidity. Analytical Biochemistry, 2005, 339, 144-149.	2.4	32
58	Characterization of the anti-Leishmania effect induced by cisplatin, an anticancer drug. Acta Tropica, 2007, 103, 133-141.	2.0	31
59	Effect of Nonsteroidal Anti-Inflammatory Drugs on the Cellular Membrane Fluidity. Journal of Pharmaceutical Sciences, 2008, 97, 3195-3206.	3.3	30
60	In Vitro and In Vivo Anticancer Activity of a Novel Nano-sized Formulation Based on Self-assembling Polymers Against Pancreatic Cancer. Pharmaceutical Research, 2010, 27, 2694-2703.	3.5	30
61	Human periprostatic white adipose tissue is rich in stromal progenitor cells and a potential source of prostate tumor stroma. Experimental Biology and Medicine, 2012, 237, 1155-1162.	2.4	29
62	The anti-caspase inhibitor Q-VD-OPH prevents AIDS disease progression in SIV-infected rhesus macaques. Journal of Clinical Investigation, 2018, 128, 1627-1640.	8.2	29
63	The impact of distinct culture media in <i>Leishmania infantum</i> biology and infectivity. Parasitology, 2014, 141, 192-205.	1.5	28
64	AMP-activated Protein Kinase As a Target For Pathogens: Friends Or Foes?. Current Drug Targets, 2016, 17, 942-953.	2.1	28
65	Peptide-based analysis of the amino acid sequence important to the immunoregulatory function of Trypanosoma cruzi Tc52 virulence factor. Immunology, 2003, 109, 147-155.	4.4	27
66	The synthesis and the in vitro cytotoxicity studies of bisnaphthalimidopropyl polyamine derivatives against colon cancer cells and parasite Leishmania infantum. Bioorganic and Medicinal Chemistry, 2007, 15, 541-545.	3.0	27
67	Aurones: A Promising Heterocyclic Scaffold for the Development of Potent Antileishmanial Agents. International Journal of Medicinal Chemistry, 2012, 2012, 1-8.	2.2	27
68	Disclosing the essentiality of ribose-5-phosphate isomerase B in Trypanosomatids. Scientific Reports, 2016, 6, 26937.	3.3	27
69	Aryl thiosemicarbazones for the treatment of trypanosomatidic infections. European Journal of Medicinal Chemistry, 2018, 146, 423-434.	5.5	27
70	Significant association between the skewed natural antibody repertoire ofXid mice and resistance toTrypanosoma cruzi infection. European Journal of Immunology, 2001, 31, 634-645.	2.9	26
71	Pâ€glycoprotein activity in human Caucasian male lymphocytes does not follow its increased expression during aging. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 912-919.	1.5	26
72	Understanding Resistance vs. Susceptibility in Visceral Leishmaniasis Using Mouse Models of Leishmania infantum Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 30.	3.9	26

#	Article	IF	CITATIONS
73	Identification of antibodies to Leishmania silent information regulatory 2 (SIR2) protein homologue during canine natural infections: pathological implications. Immunology Letters, 2003, 86, 155-162.	2.5	25
74	More than just exosomes: distinct <i>Leishmania infantum</i> extracellular products potentiate the establishment of infection. Journal of Extracellular Vesicles, 2018, 7, 1541708.	12.2	25
75	Trypanosoma cruzi carrying a targeted deletion of a Tc52 protein-encoding allele elicits attenuated Chagas' disease in mice. Immunology Letters, 2003, 89, 67-80.	2.5	24
76	A Leishmania infantum cytosolic tryparedoxin activates B cells to secrete interleukin-10 and specific immunoglobulin. Immunology, 2008, 123, 555-565.	4.4	24
77	Exploiting the 2-Amino-1,3,4-thiadiazole Scaffold To Inhibit Trypanosoma brucei Pteridine Reductase in Support of Early-Stage Drug Discovery. ACS Omega, 2017, 2, 5666-5683.	3.5	24
78	Molecular cloning of a 16-kilodalton Cu/Zn superoxide dismutase from Schistosoma mansoni. Molecular and Biochemical Parasitology, 1992, 52, 275-278.	1.1	23
79	Ultrasonication of insulin-loaded microgel particles produced by internal gelation: Impact on particle's size and insulin bioactivity. Carbohydrate Polymers, 2013, 98, 1397-1408.	10.2	23
80	Crucial CD8+ T-lymphocyte cytotoxic role in amphotericin B nanospheres efficacy against experimental visceral leishmaniasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e1021-e1030.	3.3	23
81	Sensitivity of P-glycoprotein tryptophan residues to benzodiazepines and ATP interaction. Biophysical Chemistry, 2007, 125, 143-150.	2.8	22
82	In vitro evaluation of bisnaphthalimidopropyl derivatives loaded into pegylated nanoparticles against Leishmania infantum protozoa. International Journal of Antimicrobial Agents, 2012, 39, 424-430.	2.5	22
83	Modulation of mammalian apoptotic pathways by intracellular protozoan parasites. Cellular Microbiology, 2012, 14, 325-333.	2.1	22
84	Current Treatments to Control African Trypanosomiasis and One Health Perspective. Microorganisms, 2022, 10, 1298.	3.6	22
85	Immunological alterations induced by polyamine derivatives on murine splenocytes and human mononuclear cells. International Immunopharmacology, 2004, 4, 547-556.	3.8	21
86	Structure Function Analysis of <i>Leishmania</i> Sirtuin: An Ensemble of <i>In Silico</i> and Biology and Drug Design, 2008, 71, 501-506.	3.2	21
87	The contribution of Tollâ€like receptor 2 to the innate recognition of a <i>Leishmania infantum</i> silent information regulator 2 protein. Immunology, 2009, 128, 484-499.	4.4	21
88	Enhancement of Benzothiazoles as Pteridine Reductase-1 Inhibitors for the Treatment of Trypanosomatidic Infections. Journal of Medicinal Chemistry, 2019, 62, 3989-4012.	6.4	21
89	HDAC gene expression in pancreatic tumor cell lines following treatment with the HDAC inhibitors panobinostat (LBH589) and trichostatine (TSA). Pancreatology, 2012, 12, 146-155.	1.1	20
90	Methoxylated 2'-hydroxychalcones as antiparasitic hit compounds. European Journal of Medicinal Chemistry, 2017, 126, 1129-1135.	5.5	20

#	Article	IF	CITATIONS
91	Serological evaluation of experimentally infected dogs by LicTXNPx–ELISA and amastigote-flow cytometry. Veterinary Parasitology, 2008, 158, 23-30.	1.8	19
92	In vivo imaging of pathogen homing to the host tissues. Methods, 2017, 127, 37-44.	3.8	19
93	Leishmania cytosolic silent information regulatory protein 2 deacetylase induces murine B-cell differentiation and in vivo production of specific antibodies. Immunology, 2006, 119, 529-540.	4.4	18
94	Seroepidemiological survey of Leishmania infantum infection in dogs from northeastern Portugal. Acta Tropica, 2011, 120, 82-87.	2.0	18
95	Anti-leishmanial activity of the bisnaphthalimidopropyl derivatives. Parasitology International, 2012, 61, 360-363.	1.3	18
96	Discovery of a benzothiophene-flavonol halting miltefosine and antimonial drug resistance in Leishmania parasites through the application of medicinal chemistry, screening and genomics. European Journal of Medicinal Chemistry, 2019, 183, 111676.	5.5	18
97	Accelerating Drug Discovery Efforts for Trypanosomatidic Infections Using an Integrated Transnational Academic Drug Discovery Platform. SLAS Discovery, 2019, 24, 346-361.	2.7	18
98	N-Acetylcysteine and glutathione modulate the behaviour of Trypanosoma cruzi experimental infection. Immunology Letters, 2000, 71, 79-83.	2.5	17
99	Leishmania infantum MON-98: infection in a dog from Alto Douro, Portugal. Acta Tropica, 2002, 83, 83-85.	2.0	17
100	Development of a Fluorescent Based Immunosensor for the Serodiagnosis of Canine Leishmaniasis Combining Immunomagnetic Separation and Flow Cytometry. PLoS Neglected Tropical Diseases, 2013, 7, e2371.	3.0	16
101	Vaccines for Human Leishmaniasis: Where Do We Stand and What Is Still Missing?. , 0, , .		16
102	Knockdown of Asparagine Synthetase A Renders Trypanosoma brucei Auxotrophic to Asparagine. PLoS Neglected Tropical Diseases, 2013, 7, e2578.	3.0	15
103	The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design. PLoS ONE, 2018, 13, e0193602.	2.5	15
104	Characterization of <i>Leishmania infantum</i> thiolâ€dependent reductase 1 and evaluation of its potential to induce immune protection. Parasite Immunology, 2012, 34, 345-350.	1.5	14
105	Interleukin-27 Early Impacts Leishmania infantum Infection in Mice and Correlates with Active Visceral Disease in Humans. Frontiers in Immunology, 2016, 7, 478.	4.8	14
106	Structural Insights into the Development of Cycloguanil Derivatives as <i>Trypanosoma brucei</i> Pteridine-Reductase-1 Inhibitors. ACS Infectious Diseases, 2019, 5, 1105-1114.	3.8	14
107	Looking for putative functions of the Leishmania cytosolic SIR2 deacetylase. Parasitology Research, 2006, 100, 1-9.	1.6	13
108	Proof of interaction between Leishmania SIR2RP1 deacetylase and chaperone HSP83. Parasitology Research, 2007, 100, 811-818.	1.6	13

#	Article	IF	CITATIONS
109	Potential Drug Targets in the Pentose Phosphate Pathway of Trypanosomatids. Current Medicinal Chemistry, 2019, 25, 5239-5265.	2.4	13
110	Characterization of 2,4-Diamino-6-oxo-1,6-dihydropyrimidin-5-yl Ureido Based Inhibitors of <i>Trypanosoma brucei</i> FolD and Testing for Antiparasitic Activity. Journal of Medicinal Chemistry, 2015, 58, 7938-7948.	6.4	12
111	Evaluation of Leishmania Species Reactivity in Human Serologic Diagnosis of Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2009, 81, 202-208.	1.4	12
112	Cloning of a Leishmania major gene encoding for an antigen with extensive homology to ribosomal protein S3a. Gene, 1999, 240, 57-65.	2.2	11
113	Murine infection with bioluminescent Leishmania infantum axenic amastigotes applied to drug discovery. Scientific Reports, 2019, 9, 18989.	3.3	11
114	Engineering a vector-based pan-Leishmania vaccine for humans: proof of principle. Scientific Reports, 2020, 10, 18653.	3.3	11
115	Challenges in the serological evaluation of dogs clinically suspect for canine leishmaniasis. Scientific Reports, 2020, 10, 3099.	3.3	11
116	Anti-Leishmania Effects of Volatile Oils and Their Isolates. Revista Brasileira De Farmacognosia, 0, , 1.	1.4	11
117	Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity. PLoS Neglected Tropical Diseases, 2016, 10, e0004365.	3.0	11
118	Flurazepam inhibits the P-glycoprotein transport function: An insight to revert multidrug-resistance phenotype. European Journal of Pharmacology, 2008, 581, 30-36.	3.5	10
119	Infection of hematopoietic stem cells by Leishmania infantum increases erythropoiesis and alters the phenotypic and functional profiles of progeny. Cellular Immunology, 2018, 326, 77-85.	3.0	10
120	Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease. PLoS Neglected Tropical Diseases, 2018, 12, e0006180.	3.0	10
121	Antileishmanial Drugs Modulate IL-12 Expression and Inflammasome Activation in Primary Human Cells. Journal of Immunology, 2020, 204, 1869-1880.	0.8	10
122	Exploring Lutzomyia longipalpis Sand Fly Vector Competence for Leishmania major Parasites. Journal of Infectious Diseases, 2020, 222, 1199-1203.	4.0	10
123	Protective Efficacy in a Hamster Model of a Multivalent Vaccine for Human Visceral Leishmaniasis (MuLeVaClin) Consisting of the KMP11, LEISH-F3+, and LJL143 Antigens in Virosomes, Plus GLA-SE Adjuvant. Microorganisms, 2021, 9, 2253.	3.6	10
124	Poly- <i>N</i> -Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their <i>In Vivo</i> Proinflammatory Effect. Infection and Immunity, 2016, 84, 2933-2943.	2.2	9
125	The use of Escherichia coli total antigens as a complementary approach to address seropositivity to Leishmania antigens in canine leishmaniosis. Parasitology, 2017, 144, 1384-1393.	1.5	9
126	Leishmania infantum Exoproducts Inhibit Human Invariant NKT Cell Expansion and Activation. Frontiers in Immunology, 2017, 8, 710.	4.8	9

#	Article	IF	CITATIONS
127	Host Cell Phenotypic Variability Induced by Trypanosomatid-Parasite-Released Immunomodulatory Factors: Physiopathological Implications. Journal of Biomedicine and Biotechnology, 2004, 2004, 167-174.	3.0	8
128	Molecular karyotype analysis of Perkinsus atlanticus (Phylum Perkinsozoa) by pulsed field gel electrophoresis. European Journal of Protistology, 2007, 43, 315-318.	1.5	8
129	AMPK in Pathogens. Exs, 2016, 107, 287-323.	1.4	8
130	Identification of a 2,4-diaminopyrimidine scaffold targeting Trypanosoma brucei pteridine reductase 1 from the LIBRA compound library screening campaign. European Journal of Medicinal Chemistry, 2020, 189, 112047.	5.5	8
131	Multitarget, Selective Compound Design Yields Potent Inhibitors of a Kinetoplastid Pteridine Reductase 1. Journal of Medicinal Chemistry, 2022, 65, 9011-9033.	6.4	8
132	Endogenous Trypanosoma cruzi Tc52 protein expression upregulates the growth of murine macrophages and fibroblasts and cytokine gene expression. Immunology Letters, 2001, 78, 127-134.	2.5	7
133	Activity of Bisnaphthalimidopropyl Derivatives against Trypanosoma brucei. Antimicrobial Agents and Chemotherapy, 2016, 60, 2532-2536.	3.2	7
134	Metabolic Crosstalk Between Host and Parasitic Pathogens. Experientia Supplementum (2012), 2018, 109, 421-458.	0.9	7
135	A role for hepcidin in the anemia caused by Trypanosoma brucei infection. Haematologica, 2021, 106, 806-818.	3.5	7
136	The Use of Specific Serological Biomarkers to Detect CaniLeish Vaccination in Dogs. Frontiers in Veterinary Science, 2019, 6, 373.	2.2	6
137	Conversion of Trypanosoma cruzi Tc52 released factor to a protein inducing apoptosis. Tissue and Cell, 2005, 37, 469-478.	2.2	5
138	SAR Studies and Biological Characterization of a Chromen-4-one Derivative as an Anti- <i>Trypanosoma brucei</i> Agent. ACS Medicinal Chemistry Letters, 2019, 10, 528-533.	2.8	5
139	Quantification of Leishmania Parasites in Murine Models of Visceral Infection. Methods in Molecular Biology, 2019, 1971, 289-301.	0.9	5
140	In Vitro Infections of Macrophage-Like Cell Lines with Leishmania infantum for Drug Screening. Methods in Molecular Biology, 2019, 1971, 265-277.	0.9	5
141	Recognition of Leishmania Parasites by Innate Immunity. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2009, 9, 106-127.	0.5	5
142	Benzodiazepine-Mediated Structural Changes in the Multidrug Transporter P-Glycoprotein: An Intrinsic Fluorescence Quenching Analysis. Journal of Membrane Biology, 2008, 223, 117-125.	2.1	4
143	Enantiomers of Nifurtimox Do Not Exhibit Stereoselective Anti-Trypanosoma cruzi Activity, Toxicity, or Pharmacokinetic Properties. Antimicrobial Agents and Chemotherapy, 2015, 59, 3645-3647.	3.2	4
144	Scaffolds and Biological Targets Avenue to Fight Against Drug Resistance in Leishmaniasis. Annual Reports in Medicinal Chemistry, 2018, 51, 39-95.	0.9	4

#	Article	IF	CITATIONS
145	Toward Chemical Validation of Leishmania infantum Ribose 5-Phosphate Isomerase as a Drug Target. Antimicrobial Agents and Chemotherapy, 2021, 65, e0189220.	3.2	4
146	Visceral Dissemination of Mucocutaneous Leishmaniasis in a Kidney Transplant Recipient. Pathogens, 2021, 10, 18.	2.8	4
147	Development and validation of HPLC method with fluorometric detection for quantification of bisnaphthalimidopropyldiaminooctane in animal tissues following administration in polymeric nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 2016, 120, 290-296.	2.8	3
148	Evaluating the Role of Host AMPK in Leishmania Burden. Methods in Molecular Biology, 2018, 1732, 551-563.	0.9	3
149	Intracellular adenosine released from THP-1 differentiated human macrophages is involved in an autocrine control of Leishmania parasitic burden, mediated by adenosine A2A and A2B receptors. European Journal of Pharmacology, 2020, 885, 173504.	3.5	3
150	Design, Synthesis and Antiparasitic Evaluation of Click Phospholipids. Molecules, 2021, 26, 4204.	3.8	3
151	Therapy and Further Development of Anti-Leishmanial Drugs. Current Drug Therapy, 2008, 3, 204-208.	0.3	2
152	A method for functional mouse MDR3 P-glycoprotein reconstitution in Escherichia coli lipids. Analytical Biochemistry, 2005, 338, 350-353.	2.4	1
153	Biomarkers in Leishmaniasis: From Basic Research to Clinical Application. , 2018, , .		1
154	Effect of P-Glycoprotein inducers on its expression and activity in Caco-2 cells. Toxicology Letters, 2008, 180, S116.	0.8	0
155	Silent Information Regulator 2 from Trypanosoma cruzi Is a Potential Target to Infection Control. , 2018, , .		О