Alexander S Ecker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8326430/publications.pdf

Version: 2024-02-01

31 papers 7,716 citations

361388 20 h-index 477281 29 g-index

47 all docs

47 docs citations

47 times ranked

7112 citing authors

#	Article	IF	CITATIONS
1	Learning divisive normalization in primary visual cortex. PLoS Computational Biology, 2021, 17, e1009028.	3.2	21
2	The temporal structure of the inner retina at a single glance. Scientific Reports, 2020, 10, 4399.	3.3	14
3	Deep convolutional models improve predictions of macaque V1 responses to natural images. PLoS Computational Biology, 2019, 15, e1006897.	3.2	179
4	Inception loops discover what excites neurons most using deep predictive models. Nature Neuroscience, 2019, 22, 2060-2065.	14.8	104
5	lmage content is more important than Bouma's Law for scene metamers. ELife, 2019, 8, .	6.0	27
6	Introduction to NIPS 2017 Competition Track. The Springer Series on Challenges in Machine Learning, 2018, , 1-23.	10.4	0
7	Faster processing of moving compared with flashed bars in awake macaque V1 provides a neural correlate of the flash lag illusion. Journal of Neurophysiology, 2018, 120, 2430-2452.	1.8	25
8	Attentional fluctuations induce shared variability in macaque primary visual cortex. Nature Communications, 2018, 9, 2654.	12.8	58
9	Diverse Feature Visualizations Reveal Invariances in Early Layers of Deep Neural Networks. Lecture Notes in Computer Science, 2018, , 225-240.	1.3	14
10	Texture and art with deep neural networks. Current Opinion in Neurobiology, 2017, 46, 178-186.	4.2	55
	<u> </u>		
11	Controlling Perceptual Factors in Neural Style Transfer. , 2017, , .		274
12	Controlling Perceptual Factors in Neural Style Transfer., 2017,,. A parametric texture model based on deep convolutional features closely matches texture appearance for humans. Journal of Vision, 2017, 17, 5.	0.3	274
	A parametric texture model based on deep convolutional features closely matches texture appearance	0.3	
12	A parametric texture model based on deep convolutional features closely matches texture appearance for humans. Journal of Vision, 2017, 17, 5.	0.3	40
12	A parametric texture model based on deep convolutional features closely matches texture appearance for humans. Journal of Vision, 2017, 17, 5. Image Style Transfer Using Convolutional Neural Networks. , 2016, , . Response to Comment on "Principles of connectivity among morphologically defined cell types in		40 3,141
12 13 14	A parametric texture model based on deep convolutional features closely matches texture appearance for humans. Journal of Vision, 2017, 17, 5. Image Style Transfer Using Convolutional Neural Networks. , 2016, , . Response to Comment on "Principles of connectivity among morphologically defined cell types in adult neocortex― Science, 2016, 353, 1108-1108.	12.6	40 3,141 13
12 13 14	A parametric texture model based on deep convolutional features closely matches texture appearance for humans. Journal of Vision, 2017, 17, 5. Image Style Transfer Using Convolutional Neural Networks. , 2016, , . Response to Comment on "Principles of connectivity among morphologically defined cell types in adult neocortex†Science, 2016, 353, 1108-1108. Spike sorting for large, dense electrode arrays. Nature Neuroscience, 2016, 19, 634-641. On the Structure of Neuronal Population Activity under Fluctuations in Attentional State. Journal of	12.6 14.8	40 3,141 13 671

#	Article	IF	Citations
19	Principles of connectivity among morphologically defined cell types in adult neocortex. Science, 2015, 350, aac9462.	12.6	736
20	Population code in mouse V1 facilitates readout of natural scenes through increased sparseness. Nature Neuroscience, 2014, 17, 851-857.	14.8	167
21	Is there signal in the noise?. Nature Neuroscience, 2014, 17, 750-751.	14.8	14
22	State Dependence of Noise Correlations in Macaque Primary Visual Cortex. Neuron, 2014, 82, 235-248.	8.1	307
23	Macaque Monkeys Perceive the Flash Lag Illusion. PLoS ONE, 2013, 8, e58788.	2.5	12
24	A Fast and Simple Population Code for Orientation in Primate V1. Journal of Neuroscience, 2012, 32, 10618-10626.	3.6	103
25	The Effect of Noise Correlations in Populations of Diversely Tuned Neurons. Journal of Neuroscience, 2011, 31, 14272-14283.	3.6	240
26	Reassessing optimal neural population codes with neurometric functions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4423-4428.	7.1	52
27	Decorrelated Neuronal Firing in Cortical Microcircuits. Science, 2010, 327, 584-587.	12.6	562
28	Generating Spike Trains with Specified Correlation Coefficients. Neural Computation, 2009, 21, 397-423.	2.2	167
29	Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex. Frontiers in Neuroscience, 2008, 2, 199-207.	2.8	108
30	Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Frontiers in Systems Neuroscience, 2008, 2, 2.	2.5	141
31	Recording Chronically From the Same Neurons in Awake, Behaving Primates. Journal of Neurophysiology, 2007, 98, 3780-3790.	1.8	151