Bryan Heit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8326408/publications.pdf Version: 2024-02-01

ROVAN HEIT

#	Article	IF	CITATIONS
1	Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. Journal of Experimental Medicine, 2006, 203, 2569-2575.	4.2	599
2	An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. Journal of Cell Biology, 2002, 159, 91-102.	2.3	448
3	PTEN functions to 'prioritize' chemotactic cues and prevent 'distraction' in migrating neutrophils. Nature Immunology, 2008, 9, 743-752.	7.0	229
4	Role of CD44 and Hyaluronan in Neutrophil Recruitment. Journal of Immunology, 2004, 173, 7594-7601.	0.4	178
5	Intracellular replication of <i>Staphylococcus aureus</i> in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination. Cellular Microbiology, 2016, 18, 514-535.	1.1	174
6	Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus. Pathogens, 2015, 4, 826-868.	1.2	151
7	PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. Journal of Cell Science, 2008, 121, 205-214.	1.2	135
8	Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation. Journal of Cell Biology, 2009, 185, 917-928.	2.3	120
9	Measuring Chemotaxis and Chemokinesis: The Under-Agarose Cell Migration Assay. Science Signaling, 2003, 2003, pl5-pl5.	1.6	119
10	Vav1 Is Essential for Mechanotactic Crawling and Migration of Neutrophils out of the Inflamed Microvasculature. Journal of Immunology, 2009, 182, 6870-6878.	0.4	114
11	Multimolecular Signaling Complexes Enable Syk-Mediated Signaling of CD36 Internalization. Developmental Cell, 2013, 24, 372-383.	3.1	113
12	Covid-19: Perspectives on Innate Immune Evasion. Frontiers in Immunology, 2020, 11, 580641.	2.2	113
13	A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovascular Research, 2015, 108, 268-277.	1.8	112
14	Fundamentally different roles for LFA-1, Mac-1 and α4-integrin in neutrophil chemotaxis. Journal of Cell Science, 2005, 118, 5205-5220.	1.2	102
15	SR-BI Mediated Transcytosis of HDL in Brain Microvascular Endothelial Cells Is Independent of Caveolin, Clathrin, and PDZK1. Frontiers in Physiology, 2017, 8, 841.	1.3	85
16	Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells. Molecular Biology of the Cell, 2015, 26, 740-750.	0.9	71
17	Molecular regulators of leucocyte chemotaxis during inflammation. Cardiovascular Research, 2010, 86, 183-191.	1.8	69
18	Armed for destruction: formation, function and trafficking of neutrophil granules. Cell and Tissue Research, 2018, 371, 455-471.	1.5	63

Bryan Heit

#	Article	IF	CITATIONS
19	Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E35-E44.	1.8	59
20	HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling. Scientific Reports, 2016, 6, 37021.	1.6	54
21	MIISR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures. PLoS Computational Biology, 2015, 11, e1004634.	1.5	47
22	Rab17 mediates differential antigen sorting following efferocytosis and phagocytosis. Cell Death and Disease, 2016, 7, e2529-e2529.	2.7	42
23	Cellular Responses to the Efferocytosis of Apoptotic Cells. Frontiers in Immunology, 2021, 12, 631714.	2.2	39
24	Lipopolysaccharide: A p38 MAPK-Dependent Disrupter of Neutrophil Chemotaxis. Microcirculation, 2005, 12, 421-432.	1.0	36
25	Changes in mitochondrial surface charge mediate recruitment of signaling molecules during apoptosis. American Journal of Physiology - Cell Physiology, 2011, 300, C33-C41.	2.1	36
26	HIV and Other Lentiviral Infections Cause Defects in Neutrophil Chemotaxis, Recruitment, and Cell Structure: Immunorestorative Effects of Granulocyte-Macrophage Colony-Stimulating Factor. Journal of Immunology, 2006, 177, 6405-6414.	0.4	35
27	In Vivo Impairment of Neutrophil Recruitment during Lentivirus Infection. Journal of Immunology, 2003, 171, 4801-4808.	0.4	33
28	Soluble CD93 is an apoptotic cell opsonin recognized by α _x β ₂ . European Journal of Immunology, 2019, 49, 600-610.	1.6	28
29	PSD-95 regulates CRFR1 localization, trafficking and β-arrestin2 recruitment. Cellular Signalling, 2016, 28, 531-540.	1.7	24
30	Endothelial LSP1 Modulates Extravascular Neutrophil Chemotaxis by Regulating Nonhematopoietic Vascular PECAM-1 Expression. Journal of Immunology, 2015, 195, 2408-2416.	0.4	23
31	Cytoskeletal confinement of CX ₃ CL1 limits its susceptibility to proteolytic cleavage by ADAM10. Molecular Biology of the Cell, 2014, 25, 3884-3899.	0.9	22
32	Short-Lived Cages Restrict Protein Diffusion in the Plasma Membrane. Scientific Reports, 2016, 6, 34987.	1.6	22
33	Efferocytic Defects in Early Atherosclerosis Are Driven by GATA2 Overexpression in Macrophages. Frontiers in Immunology, 2020, 11, 594136.	2.2	22
34	CD36 mediates albumin transcytosis by dermal but not lung microvascular endothelial cells: role in fatty acid delivery. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L740-L750.	1.3	21
35	Mechanisms of Dysregulated Humoral and Cellular Immunity by SARS-CoV-2. Pathogens, 2020, 9, 1027.	1.2	20
36	Rab17 mediates intermixing of phagocytosed apoptotic cells with recycling endosomes. Small GTPases, 2019, 10, 218-226.	0.7	18

Bryan Heit

#	Article	IF	CITATIONS
37	Quantitative Efferocytosis Assays. Methods in Molecular Biology, 2017, 1519, 25-41.	0.4	14
38	Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease. Pathogens, 2021, 10, 134.	1.2	14
39	Membrane Diffusion Occurs by Continuous-Time Random Walk Sustained by Vesicular Trafficking. Biophysical Journal, 2018, 114, 2887-2899.	0.2	13
40	Antagonistic Coevolution of MER Tyrosine Kinase Expression and Function. Molecular Biology and Evolution, 2017, 34, 1613-1628.	3.5	11
41	Human-Specific Mutations and Positively Selected Sites in MARCO Confer Functional Changes. Molecular Biology and Evolution, 2018, 35, 440-450.	3.5	11
42	Visualizing Interactions Between HIV-1 Nef and Host Cellular Proteins Using Ground-State Depletion Microscopy. AIDS Research and Human Retroviruses, 2015, 31, 671-672.	0.5	10
43	82-kDa choline acetyltransferase and SATB1 localize to β-amyloid induced matrix attachment regions. Scientific Reports, 2016, 6, 23914.	1.6	10
44	Having an Old Friend for Dinner: The Interplay between Apoptotic Cells and Efferocytes. Cells, 2021, 10, 1265.	1.8	9
45	Rab CTPases in the differential processing of phagocytosed pathogens versus efferocytosed apoptotic cells. Histology and Histopathology, 2021, 36, 123-135.	0.5	9
46	Customizable live-cell imaging chambers for multimodal and multiplex fluorescence microscopy. Biochemistry and Cell Biology, 2020, 98, 612-623.	0.9	5
47	Integrin-linked kinase regulates melanosome trafficking and melanin transfer in melanocytes. Molecular Biology of the Cell, 2020, 31, 768-781.	0.9	5
48	Quantification of Efferocytosis by Single-cell Fluorescence Microscopy. Journal of Visualized Experiments, 2018, , .	0.2	4
49	Optimizing Long-Term Live Cell Imaging. Methods in Molecular Biology, 2022, 2440, 57-73.	0.4	4
50	PACS-1 and adaptor protein-1 mediate ACTH trafficking to the regulated secretory pathway. Biochemical and Biophysical Research Communications, 2018, 507, 519-525.	1.0	3
51	Super-Resolution Imaging of G Protein-Coupled Receptors Using Ground State Depletion Microscopy. Methods in Molecular Biology, 2019, 1947, 323-336.	0.4	3
52	Gene Expression Profiling of Lesion-Resident Macrophages in Human Atherosclerosis. Atherosclerosis Supplements, 2018, 32, 106.	1.2	0
53	Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. Journal of Cell Biology, 2006, 175, i13-i13.	2.3	0
54	Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation. Journal of General Physiology, 2009, 134, i1-i1.	0.9	0

#	Article	IF	CITATIONS
55	Monitoring Cellular Responses to Infection with Fluorescent Biosensors. Methods in Molecular Biology, 2022, 2440, 99-114.	0.4	0