
Paola Pontecorvi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8326362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunomodulatory Effect of Adipose-Derived Stem Cells: The Cutting Edge of Clinical Application. Frontiers in Cell and Developmental Biology, 2020, 8, 236.	3.7	113
2	MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1. Journal of Experimental and Clinical Cancer Research, 2020, 39, 3.	8.6	39
3	Autophagy activation is required for myofibroblast differentiation during healing of oral mucosa. Journal of Clinical Periodontology, 2017, 44, 1039-1050.	4.9	36
4	PARP inhibitors affect growth, survival and radiation susceptibility of human alveolar and embryonal rhabdomyosarcoma cell lines. Journal of Cancer Research and Clinical Oncology, 2019, 145, 137-152.	2.5	25
5	Neuropilin 1 Mediates Keratinocyte Growth Factor Signaling in Adipose-Derived Stem Cells: Potential Involvement in Adipogenesis. Stem Cells International, 2018, 2018, 1-18.	2.5	21
6	MiR-200c-3p Contrasts PD-L1 Induction by Combinatorial Therapies and Slows Proliferation of Epithelial Ovarian Cancer through Downregulation of β-Catenin and c-Myc. Cells, 2021, 10, 519.	4.1	20
7	Fibrinolysis protease receptors promote activation of astrocytes to express pro-inflammatory cytokines. Journal of Neuroinflammation, 2019, 16, 257.	7.2	19
8	DNMT3A and DNMT3B Targeting as an Effective Radiosensitizing Strategy in Embryonal Rhabdomyosarcoma. Cells, 2021, 10, 2956.	4.1	18
9	Protein–protein interaction network analysis applied to DNA copy number profiling suggests new perspectives on the aetiology of Mayer–Rokitansky–Küster–Hauser syndrome. Scientific Reports, 2021, 11, 448.	3.3	13
10	Sex-Related Factors in Cardiovascular Complications Associated to COVID-19. Biomolecules, 2022, 12, 21.	4.0	10
11	MiR-200c-3p maintains stemness and proliferative potential in adipose-derived stem cells by counteracting senescence mechanisms. PLoS ONE, 2021, 16, e0257070.	2.5	8
12	OTX015 Epi-Drug Exerts Antitumor Effects in Ovarian Cancer Cells by Blocking GNL3-Mediated Radioresistance Mechanisms: Cellular, Molecular and Computational Evidence. Cancers, 2021, 13, 1519.	3.7	7
13	Critical transition across the Waddington landscape as an interpretative model. Physics of Life Reviews, 2021, 38, 115-119.	2.8	5
14	Altered Expression of Candidate Genes in Mayer–Rokitansky–Küster–Hauser Syndrome May Influence Vaginal Keratinocytes Biology: A Focus on Protein Kinase X. Biology, 2021, 10, 450.	2.8	4
15	Calcineurin Gamma Catalytic Subunit PPP3CC Inhibition by miR-200c-3p Affects Apoptosis in Epithelial Ovarian Cancer. Genes, 2021, 12, 1400.	2.4	4
16	Microenvironment promotes cytoskeleton remodeling and adaptive phenotypic transition. Biocell, 2022, 46, 1357-1362.	0.7	1