Andrew R Thomson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8326355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comment on "Discovery of davemaoite, CaSiO ₃ -perovskite, as a mineral from the lower mantle― Science, 2022, 376, eabo0882.	12.6	4
2	Geochemistry of Silicate and Oxide Inclusions in Sublithospheric Diamonds. Reviews in Mineralogy and Geochemistry, 2022, 88, 393-450.	4.8	20
3	Peritectic Melting of Mica in Faultâ€Related Pseudotachylite Melts and Potassium Mass Balance as an Indicator of Fluidâ€Absent Source Conditions Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009217.	2.5	1
4	Evaluating the Formation Pressure of Diamondâ€Hosted Majoritic Garnets: A Machine Learning Majorite Barometer. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020604.	3.4	23
5	The miscibility of calcium silicate perovskite and bridgmanite: A single perovskite solid solution in hot, iron-rich regions. Earth and Planetary Science Letters, 2021, 566, 116973.	4.4	5
6	Experimental elasticity of Earth's deep mantle. Nature Reviews Earth & Environment, 2020, 1, 455-469.	29.7	17
7	Deep Earth carbon reactions through time and space. American Mineralogist, 2020, 105, 22-27.	1.9	5
8	Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth's lower mantle. Nature, 2019, 572, 643-647.	27.8	52
9	Diamonds and the Mantle Geodynamics of Carbon. , 2019, , 89-128.		16
10	CO2-Rich Melts in Earth. , 2019, , 129-162.		10
11	The speciation, distribution, transport, and impact of volatile elements in the Earth's interior. Chemical Geology, 2018, 478, 1.	3.3	0
12	The phase diagrams of KCaF3 and NaMgF3 by ab initio simulations. Physics and Chemistry of Minerals, 2018, 45, 311-322.	0.8	15
13	Diamonds from the lower mantle?. American Mineralogist, 2017, 102, 929-930.	1.9	3
14	Experimental constraints on melting temperatures in the MgO–SiO2 system at lower mantle pressures. Earth and Planetary Science Letters, 2017, 472, 186-196.	4.4	22
15	The phase diagram of NiSi under the conditions of small planetary interiors. Physics of the Earth and Planetary Interiors, 2016, 261, 196-206.	1.9	8
16	Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: Evidence for diamond growth from slab melts. Lithos, 2016, 265, 108-124.	1.4	34
17	Metastable structural transformations and pressure-induced amorphization in natural (Mg,Fe) ₂ SiO ₄ olivine under static compression: A Raman spectroscopic study. American Mineralogist, 2016, 101, 1642-1650.	1.9	20
18	High-temperature equation of state of vanadium. High Pressure Research, 2016, 36, 16-22.	1.2	7

ANDREW R THOMSON

#	Article	IF	CITATIONS
19	Slab melting as a barrier to deep carbon subduction. Nature, 2016, 529, 76-79.	27.8	343
20	The stability of hydrous silicates in Earth's lower mantle: Experimental constraints from the systems MgO–SiO2–H2O and MgO–Al2O3–SiO2–H2O. Chemical Geology, 2015, 418, 16-29.	3.3	77
21	Stable isotope evidence for crustal recycling as recorded by superdeep diamonds. Earth and Planetary Science Letters, 2015, 432, 374-380.	4.4	54
22	The equation of state of thePmmnphase of NiSi. Journal of Applied Crystallography, 2015, 48, 1914-1920.	4.5	2
23	Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): constraints from carbon isotopes and inclusion compositions. Contributions To Mineralogy and Petrology, 2014, 168, 1.	3.1	87
24	Constraining the internal variability of the stable isotopes of carbon and nitrogen within mantle diamonds. Chemical Geology, 2014, 366, 14-23.	3.3	48
25	The melting curve of Ni to 1 Mbar. Earth and Planetary Science Letters, 2014, 408, 226-236.	4.4	55
26	Experimental determination of melting in the systems enstatite-magnesite and magnesite-calcite from 15 to 80 GPa. American Mineralogist, 2014, 99, 1544-1554.	1.9	23
27	The Distribution of Olivine Compositions in Icelandic Basalts and Picrites. Journal of Petrology, 2013, 54, 745-768.	2.8	85