
Chunyan Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8326334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumorâ€Targeted Drug and CpG Delivery System for Phototherapy and Docetaxelâ€Enhanced Immunotherapy with Polarization toward M1â€Type Macrophages on Triple Negative Breast Cancers. Advanced Materials, 2019, 31, e1904997.	21.0	238
2	Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. International Journal of Nanomedicine, 2017, Volume 12, 1941-1958.	6.7	82
3	PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer. Gene, 2018, 642, 43-50.	2.2	62
4	Expression of IL-11 [±] and IL-6 is Associated with Progression and Prognosis of Human Cervical Cancer. Medical Science Monitor, 2016, 22, 4475-4481.	1.1	62
5	LINC01133 inhibits breast cancer invasion and metastasis by negatively regulating SOX4 expression through EZH2. Journal of Cellular and Molecular Medicine, 2019, 23, 7554-7565.	3.6	50
6	Integrating <i>in situ</i> formation of nanozymes with mesoporous polydopamine for combined chemo, photothermal and hypoxia-overcoming photodynamic therapy. Chemical Communications, 2019, 55, 14785-14788.	4.1	44
7	Glucose Oxidaseâ€Related Cancer Therapies. Advanced Therapeutics, 2020, 3, 2000110.	3.2	42
8	Metalâ€Polyphenolâ€Network Coated Prussian Blue Nanoparticles for Synergistic Ferroptosis and Apoptosis via Triggered GPX4 Inhibition and Concurrent In Situ Bleomycin Toxification. Small, 2021, 17, e2103919.	10.0	41
9	Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/ photodynamic therapy. Acta Biomaterialia, 2022, 138, 463-477.	8.3	38
10	The long non-coding RNA SUMO1P3 facilitates breast cancer progression by negatively regulating miR-320a. American Journal of Translational Research (discontinued), 2017, 9, 5594-5602.	0.0	37
11	Biocompatible polyethylenimine-graft-dextran catiomer for highly efficient gene delivery assisted by a nuclear targeting ligand. Polymer Chemistry, 2013, 4, 2528.	3.9	36
12	M2â€Like TAMs Function Reversal Contributes to Breast Cancer Eradication by Combination Dual Immune Checkpoint Blockade and Photothermal Therapy. Small, 2021, 17, e2007051.	10.0	34
13	Dual-Responsive and ROS-Augmented Nanoplatform for Chemo/Photodynamic/Chemodynamic Combination Therapy of Triple Negative Breast Cancer. ACS Applied Materials & Interfaces, 2022, 14, 57-68.	8.0	32
14	A Fe(III)-porphyrin-oxaliplatin(IV) nanoplatform for enhanced ferroptosis and combined therapy. Journal of Controlled Release, 2022, 348, 660-671.	9.9	32
15	Association of glutathione S-transferase T1, M1, and P1 polymorphisms in the breast cancer risk: a meta-analysis. Therapeutics and Clinical Risk Management, 2016, 12, 763.	2.0	31
16	Post-synthesis strategy to integrate porphyrinic metal–organic frameworks with CuS NPs for synergistic enhanced photo-therapy. Journal of Materials Chemistry B, 2020, 8, 935-944.	5.8	29
17	A Ru ^{II} Polypyridyl Alkyne Complex Based Metal–Organic Frameworks for Combined Photodynamic/Photothermal/Chemotherapy. Chemistry - A European Journal, 2020, 26, 1668-1675.	3.3	29
18	Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. Journal of Materials Chemistry B, 2020, 8, 8368-8382.	5.8	29

CHUNYAN DONG

#	Article	IF	CITATIONS
19	A Cu9S5 nanoparticle-based CpG delivery system for synergistic photothermal-, photodynamic- and immunotherapy. Communications Biology, 2020, 3, 343.	4.4	29
20	Targeted Delivery of Chlorin e6 via Redox Sensitive Diselenide-Containing Micelles for Improved Photodynamic Therapy in Cluster of Differentiation 44-Overexpressing Breast Cancer. Frontiers in Pharmacology, 2019, 10, 369.	3.5	25
21	Nanotechnologies for enhancing cancer immunotherapy. Nano Research, 2020, 13, 2595-2616.	10.4	22
22	Engineering of peglayted camptothecin into core–shell nanomicelles for improving solubility, stability and combination delivery. MedChemComm, 2012, 3, 1555.	3.4	19
23	Self-assembled, redox-sensitive, H-shaped pegylated methotrexate conjugates with high drug-carrying capability for intracellular drug delivery. MedChemComm, 2014, 5, 147-152.	3.4	19
24	Treatment of triple negative breast cancer by near infrared light triggered mild-temperature photothermal therapy combined with oxygen-independent cytotoxic free radicals. Acta Biomaterialia, 2022, 148, 218-229.	8.3	18
25	A PDA-DTC/Cu–MnO2 nanoplatform for MR imaging and multi-therapy for triple-negative breast cancer treatment. Chemical Communications, 2021, 57, 4158-4161.	4.1	14
26	A multifunctional SN38-conjugated nanosystem for defeating myelosuppression and diarrhea induced by irinotecan in esophageal cancer. Nanoscale, 2020, 12, 21234-21247.	5.6	13
27	Nanoparticleâ€Mediated siRNA Delivery and Multifunctional Modification Strategies for Effective Cancer Therapy. Advanced Materials Technologies, 2021, 6, 2001236.	5.8	13
28	Immune Myocarditis Overlapping With Myasthenia Gravis Due to Anti-PD-1 Treatment for a Chordoma Patient: A Case Report and Literature Review. Frontiers in Immunology, 2021, 12, 682262.	4.8	13
29	Programmable Ce6 Delivery via Cyclopamine Based Tumor Microenvironment Modulating Nano-System for Enhanced Photodynamic Therapy in Breast Cancer. Frontiers in Chemistry, 2019, 7, 853.	3.6	12
30	Exploiting a New Approach to Destroy the Barrier of Tumor Microenvironment: Nano-Architecture Delivery Systems. Molecules, 2021, 26, 2703.	3.8	12
31	Overexpression and biological function of MEF2D in human pancreatic cancer. American Journal of Translational Research (discontinued), 2017, 9, 4836-4847.	0.0	12
32	MT1JP inhibits tumorigenesis and enhances cisplatin sensitivity of breast cancer cells through competitively binding to miR-24-3p. American Journal of Translational Research (discontinued), 2019, 11, 245-256.	0.0	12
33	Carbonic anhydrase IX-targeted H-APBC nanosystem combined with phototherapy facilitates the efficacy of PI3K/mTOR inhibitor and resists HIF-1α-dependent tumor hypoxia adaptation. Journal of Nanobiotechnology, 2022, 20, 187.	9.1	12
34	The Mechanisms of IncRNA-Mediated Multidrug Resistance and the Clinical Application Prospects of IncRNAs in Breast Cancer. Cancers, 2022, 14, 2101.	3.7	11
35	A self-amplified nanocatalytic system for achieving "1 + 1 + 1 > 3―chemod negative breast cancer. Journal of Nanobiotechnology, 2021, 19, 261.	ynamic thei 9.1	rapy on triple
36	Recent advances of nanodrug delivery system in the treatment of hematologic malignancies. Seminars in Cancer Biology, 2022, 86, 607-623.	9.6	10

Chunyan Dong

#	Article	IF	CITATIONS
37	A redox-activated theranostic nanoplatform: toward glutathione-response imaging guided enhanced-photodynamic therapy. Inorganic Chemistry Frontiers, 2019, 6, 2865-2872.	6.0	9
38	High Expression of Stromal Cell-Derived Factor 1 (SDF-1) and NF-κB Predicts Poor Prognosis in Cervical Cancer. Medical Science Monitor, 2017, 23, 151-157.	1.1	9
39	[Ru(phen) ₂ podppz] ²⁺ significantly inhibits glioblastoma growth <i>in vitro</i> and <i>vivo</i> with fewer side-effects than cisplatin. Dalton Transactions, 2020, 49, 8864-8871.	3.3	8
40	RGD-modified liposomes enhance efficiency of aclacinomycin A delivery: evaluation of their effect in lung cancer. Drug Design, Development and Therapy, 2015, 9, 4613.	4.3	6
41	Mercury mediated DNA–Au/Ag nanocluster ensembles to generate a gray code encoder for biocomputing. Materials Horizons, 0, , .	12.2	5
42	Supramolecular, prodrug-based micelles with enzyme-regulated release behavior for controlled drug delivery. MedChemComm, 2015, 6, 1874-1881.	3.4	4
43	Extracellular retention of a cyclopamine nanoformulation leveraging larger size and more negative charge for improved breast cancer treatment. Journal of Materials Chemistry B, 2018, 6, 1834-1843.	5.8	4
44	Surgery Plus Chemotherapy Versus Surgery Alone for Limited-Stage Small-Cell Lung Cancer: A Population-Based Survival Outcome Analysis. Frontiers in Oncology, 2021, 11, 676598.	2.8	3
45	Prognostic implications of combined high expression of CD47 and MCT1 in breast cancer: a retrospective study during a 10-year period. Translational Cancer Research, 2022, 11, 29-42.	1.0	2
46	Antiâ€Tumor Nanoplatforms: M2â€Like TAMs Function Reversal Contributes to Breast Cancer Eradication by Combination Dual Immune Checkpoint Blockade and Photothermal Therapy (Small 13/2021). Small, 2021, 17, 2170059.	10.0	1