
Gunther Kolb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8326244/publications.pdf Version: 2024-02-01

CUNTHER KOUR

#	Article	IF	CITATIONS
1	Tanks-in-series model for an auto-thermal reforming reactor with a channeled monolith. Chemical Engineering Science, 2021, 231, 116269.	3.8	2
2	Promoting effect of Rh on the activity and stability of Pt-based methane combustion catalyst in microreactors. Catalysis Communications, 2021, 149, 106202.	3.3	9
3	A complete fuel processor for propylene glycol as hydrogen supply for a 5 kw low temperature pem fuel cell – Interim report on single reactors and system performance. Catalysis Today, 2021, , .	4.4	2
4	Direct Conversion of Carbon Dioxide to Methane over Ceria―and Aluminaâ€Supported Nickel Catalysts for Biogas Valorization. ChemPlusChem, 2021, 86, 889-903.	2.8	9
5	2D Model of Transfer Processes for Water Boiling Flow in Microchannel. ChemEngineering, 2021, 5, 42.	2.4	2
6	Effects of support composition on the performance of nickel catalysts in CO2 methanation reaction. Catalysis Today, 2020, 357, 468-482.	4.4	56
7	Hydrogen production over highly active Pt based catalyst coatings by steam reforming of methanol: Effect of support and co-support. International Journal of Hydrogen Energy, 2020, 45, 1658-1670.	7.1	54
8	CO Total and Preferential Oxidation over Stable Au/TiO2 Catalysts Derived from Preformed Au Nanoparticles. Catalysts, 2020, 10, 1028.	3.5	3
9	Effect of Support and Chelating Ligand on the Synthesis of Ni Catalysts with High Activity and Stability for CO2 Methanation. Catalysts, 2020, 10, 493.	3.5	10
10	Microchannel reactor heat-exchangers: A review of design strategies for the effective thermal coupling of gas phase reactions. Chemical Engineering and Processing: Process Intensification, 2020, 157, 108164.	3.6	26
11	CO 2 Methanation in Microstructured Reactors – Catalyst Development and Process Design. Chemical Engineering and Technology, 2019, 42, 2076-2084.	1.5	18
12	Nano-architectured CeO2 supported Rh with remarkably enhanced catalytic activity for propylene glycol reforming reaction in microreactors. Applied Catalysis B: Environmental, 2018, 226, 403-411.	20.2	19
13	Energy-Efficient Routes for the Production of Gasoline from Biogas and Pyrolysis Oil—Process Design and Life-Cycle Assessment. Industrial & Engineering Chemistry Research, 2017, 56, 3373-3387.	3.7	14
14	Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors. Applied Catalysis B: Environmental, 2017, 203, 859-869.	20.2	89
15	Control of autothermal reforming reactor of diesel fuel. Journal of Power Sources, 2016, 313, 223-232.	7.8	16
16	Novel route to control the size, distribution and location of Ni nanoparticles in mesoporous silica for steam reforming of propylene glycol in microchannel reactor. Catalysis Communications, 2016, 83, 43-47.	3.3	12
17	Review: Microstructured reactors as efficient tool for the operation of selective oxidation reactions. Catalysis Today, 2016, 278, 3-21.	4.4	35
18	Operation of a Small‣cale Demonstration Plant for Biodiesel Synthesis under Supercritical Conditions. Chemical Engineering and Technology, 2016, 39, 2151-2163.	1.5	7

GUNTHER KOLB

#	Article	IF	CITATIONS
19	Highly active and durable Pt/In2O3/Al2O3 catalysts in methanol steam reforming. International Journal of Hydrogen Energy, 2016, 41, 21990-21999.	7.1	69
20	BIOGO: contributing to the transformation of the petrochemical industry through advances in nanocatalysts and reactor design. Green Processing and Synthesis, 2015, 4, .	3.4	1
21	Automated and Continuous Production ofÂMicrostructured Metallic Plates via Cold Embossing. Chemical Engineering and Technology, 2015, 38, 1308-1314.	1.5	4
22	Thermocatalytic decomposition of propane for pure hydrogen production and subsequent carbon gasification: Activity and long-term stability of Ni/Al2O3 based catalysts. Catalysis Today, 2015, 242, 139-145.	4.4	3
23	Methane reforming in a small-scaled plasma reactor – Industrial application of a plasma process from the viewpoint of the environmental profile. Chemical Engineering Journal, 2015, 262, 766-774.	12.7	25
24	Effect of oxygen addition on the water–gas shift reaction over Pt/CeO 2 catalysts in microchannels – Results from catalyst testing and reactor performance in the kW scale. International Journal of Hydrogen Energy, 2014, 39, 18120-18127.	7.1	9
25	Synthesis gas production from methane and propane in a miniaturized GlidArc ® reformer. International Journal of Hydrogen Energy, 2014, 39, 12657-12666.	7.1	9
26	Microstructured Plate Heat Exchanger Reactors for High Temperature Applications. Chemie-Ingenieur-Technik, 2013, 85, 1619-1623.	0.8	2
27	Application of rhodium nanoparticles for steam reforming of propane in microchannels. Catalysis Communications, 2013, 41, 140-145.	3.3	17
28	Review: Microstructured reactors for distributed and renewable production of fuels and electrical energy. Chemical Engineering and Processing: Process Intensification, 2013, 65, 1-44.	3.6	208
29	Methanol Steam Reforming over Indium-Promoted Pt/Al ₂ O ₃ Catalyst: Nature of the Active Surface. Journal of Physical Chemistry C, 2013, 117, 6143-6150.	3.1	37
30	Design and operation of a compact microchannel 5 kW el,net methanol steam reformer with novel Pt/In 2 O 3 catalyst for fuel cell applications. Chemical Engineering Journal, 2012, 207-208, 388-402.	12.7	42
31	Entwicklung einer leistungsstarken Mikrorektifikationsapparatur für analytische und prÃ p arative Anwendungen. Chemie-Ingenieur-Technik, 2011, 83, 465-478.	0.8	17
32	Self-sustained operation and durability testing of a 300 W-class micro-structured LPG fuel processor. International Journal of Hydrogen Energy, 2011, 36, 3496-3504.	7.1	27
33	Nd:YAG-Laser Welding with Dynamic Beam Forming. Laser Technik Journal, 2010, 7, 28-31.	0.2	10
34	The development and evaluation of microstructured reactors for the water gas shift and preferential oxidation reactions in the 5kW range. International Journal of Hydrogen Energy, 2010, 35, 2317-2327.	7.1	42
35	Methanol steam reforming over bimetallic Pd–In/Al2O3 catalysts in a microstructured reactor. Applied Catalysis A: General, 2010, 380, 15-20.	4.3	60
36	Investigation on the Combined Operation of Water Gas Shift and Preferential Oxidation Reactor System on the kW Scale. Industrial & Engineering Chemistry Research, 2010, 49, 10917-10923.	3.7	7

GUNTHER KOLB

#	Article	IF	CITATIONS
37	Kinetic study of CO preferential oxidation over Pt–Rh/γ-Al2O3 catalyst in a micro-structured recycle reactor. Catalysis Today, 2009, 145, 90-100.	4.4	22
38	Microstructured reactors for diesel steam reforming, water-gas shift and preferential oxidation in the kiloWatt power range. Catalysis Today, 2009, 147, S176-S184.	4.4	37
39	Selective Methanation of Carbon Monoxide in Hydrogen-rich Reformate Using Microstructured Reactor. Chemistry Letters, 2009, 38, 824-825.	1.3	4
40	A micro-structured 5kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power unitsPart I. Development of autothermal reforming catalyst and reactor. Chemical Engineering Journal, 2008, 137, 653-663.	12.7	46
41	A micro-structured 5kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power unitsPart II—Development of water–gas shift and preferential oxidation catalysts reactors and assembly of the fuel processor. Chemical Engineering Journal, 2008, 138, 474-489.	12.7	57
42	Preferential CO oxidation over a copper–cerium oxide catalyst in a microchannel reactor. Applied Catalysis A: General, 2008, 350, 53-62.	4.3	69
43	Preferential CO oxidation over catalysts with well-defined inverse opal structure in microchannels. International Journal of Hydrogen Energy, 2008, 33, 797-801.	7.1	33
44	A complete miniaturized microstructured methanol fuel processor/fuel cell system for low power applications. International Journal of Hydrogen Energy, 2008, 33, 1374-1382.	7.1	55
45	Micro-Structured Evaporators for Laboratory Applications and Mobile Power Generation. , 2008, , .		0
46	Low temperature catalytic combustion of propane over Pt-based catalyst with inverse opal microstructure in a microchannel reactor. Chemical Communications, 2007, , 260-262.	4.1	24
47	Selective methanation of carbon oxides in a microchannel reactor—Primary screening and impact of gas additives. Catalysis Today, 2007, 125, 81-87.	4.4	62
48	Preparation of Pt/ZSM-5 films on stainless steel microreactors. Catalysis Today, 2007, 125, 2-10.	4.4	52
49	Temperature control of the water gas shift reaction in microstructured reactors. Chemical Engineering Science, 2007, 62, 4602-4611.	3.8	39
50	Ethanol Steam Reforming in a Microchannel Reactor. Chemical Engineering Research and Design, 2007, 85, 413-418.	5.6	49
51	Fuel processing in integrated micro-structured heat-exchanger reactors. Journal of Power Sources, 2007, 171, 198-204.	7.8	93
52	Microstructured Fuel Processors for Fuel-Cell Applications. Journal of Materials Engineering and Performance, 2006, 15, 389-393.	2.5	21
53	Water-gas shift reaction in micro-channels—Results from catalyst screening and optimisation. Catalysis Today, 2005, 110, 121-131.	4.4	45
54	A new, versatile field immunosensor for environmental pollutantsDevelopment and proof of principle with TNT, diuron, and atrazine. Biosensors and Bioelectronics, 2005, 21, 354-364.	10.1	52

GUNTHER KOLB

#	Article	IF	CITATIONS
55	Characterization of Cu/CeO2/γ-Al2O3 Thin Film Catalysts by Thermal Desorption Spectroscopy. Catalysis Letters, 2005, 105, 35-40.	2.6	23
56	Steam reforming of methanol over Cu/CeO2/γ-Al2O3 catalysts in a microchannel reactor. Applied Catalysis A: General, 2004, 277, 83-90.	4.3	91
57	Micro-structured reactors for gas phase reactions. Chemical Engineering Journal, 2004, 98, 1-38.	12.7	397
58	Propane steam reforming in micro-channels—results from catalyst screening and optimisation. Applied Catalysis A: General, 2004, 277, 155-166.	4.3	113
59	Detailed Characterization of Various Porous Alumina-Based Catalyst Coatings Within Microchannels and Their Testing for Methanol Steam Reforming. Chemical Engineering Research and Design, 2003, 81, 721-729.	5.6	113
60	Microfabrication for Energy Generating Devices and Fuel Processors. , 0, , 5-38.		0
61	Microreactor Concepts and Processing. , 0, , 85-129.		2